
 1 of 90

Micriµm

949 Crestview Circle
Weston, FL 33327

U.S.A.
www.Micrium.com

µC/OS-II

The Real-Time kernel

V2.90

Release Notes

© Copyright 2010, Micriµm
All Rights reserved

Phone: +1 954 217 2036 FAX: +1 954 217 2037

http://www.micrium.com/

 2 of 90

V2.90
(2010/05/18)

This is a minor release as it contains only a few items that were not caught prior to

releasing V2.89.

CHANGES TO V2.89

You should follow these steps in order to upgrade from a previous version to V2.89.

1) OS_CORE.C:

 Added OSSafetyCriticalStart() to indicate that all initialization has

been completed and that kernel objects are no longer allowed to be created.

2) All Files:

 Modified the source code to reduce the number of MISRA-C 2004 rules not

respected:

 8.5 - there shall be no definition of objects or functions in a header file

 14.7 - a function should have a single point of exit

 15.2 - every non-empty case clause in a switch statement shall be terminated

with a break statement

 15.4 - only one case - a switch expression should not represent a Boolean value

 17.4 - array indexing shall only be applied to objects defined as an array type

 17.4 - pointer arithmetic should not be used

3) uCOS_II.H:

 Corrected compilation error when OS_EVENT_EN is disabled and OS_FLAG_EN

is enabled.

4) OS_FLAG.C:

 Replaced safety critical test to check OSSafetyCriticalStartFlag set by

OSSafetyCriticalStart() on OSFlagCreate().

5) OS_MBOX.C:

 Replaced safety critical test to check OSSafetyCriticalStartFlag set by

OSSafetyCriticalStart() on OSMboxCreate().

6) OS_MEM.C:

 Replaced safety critical test to check OSSafetyCriticalStartFlag set by

OSSafetyCriticalStart() on OSMemCreate().

 3 of 90

7) OS_MUTEX.C:

 Replaced safety critical test to check OSSafetyCriticalStartFlag set by

OSSafetyCriticalStart() on OSMutexCreate().

8) OS_Q.C:

 Replaced safety critical test to check OSSafetyCriticalStartFlag set by

OSSafetyCriticalStart() on OSQCreate().

9) OS_SEM.C:

 Replaced safety critical test to check OSSafetyCriticalStartFlag set by

OSSafetyCriticalStart() on OSSemCreate().

10) OS_TASK.C:

 Replaced safety critical test to check OSSafetyCriticalStartFlag set by

OSSafetyCriticalStart() on OSTaskCreateExt() and

OSTaskCreate().

11) OS_TMR.C:

 Replaced safety critical test to check OSSafetyCriticalStartFlag set by

OSSafetyCriticalStart() on OSTmrCreate().

 4 of 90

V2.89
(2009/06/09)

This is a minor release as it contains only a few items that were not caught prior to

releasing V2.88.

CHANGES TO V2.88

You should follow these steps in order to upgrade from a previous version to V2.88.

1) All Files:

 Added „u‟ as a suffix to all constant values to denote that these numbers are

unsigned. This was done to satisfy one of the MISRA-C:2004 rules.

 Added cast to (INT8U *) for all constants strings.

2) OS_CORE.C:

 The „pname‟ argument of OSEventNameGet() needed to be a „**pname‟

instead of „*pname‟.

 If OS_TASK_SUSPEND_EN is not set to 0 then OS_TaskStat() will call

OSTimeDly(OS_TICKS_PER_SEC) if OSIdleCtrMax is zero.

3) OS_MEM.C:

 The „pname‟ argument of OSMemNameGet() needed to be a „**pname‟

instead of „*pname‟.

4) OS_MUTEX.C:

 Needed to set OSPrioCur to „prio‟ in internal function

OSMutex_RdyAtPrio().

5) OS_TASK.C:

 The „pname‟ argument of OSTaskNameGet() needed to be a „**pname‟

instead of „*pname‟.

 Added OS_TaskReturn() to catch tasks from returning without deleting

themselves. This function requires that a new hook function be declared:

OSTaskReturnHook().

6) OS_TASK.C:

 The „pname‟ argument of OSTaskNameGet() needed to be a „**pname‟

instead of „*pname‟.

 5 of 90

V2.88
(2009/01/21)

This is a minor release as it contains only a few items that were not caught prior to

releasing V2.87.

CHANGES TO V2.87

You should follow these steps in order to upgrade from a previous version to V2.87.

1) OS_CORE.C:

 OSIntExit() and OS_Sched() have changed slightly because of a boundary

condition found with the Cortex-M3 port. Specifically, we needed to move the

statement:

OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy];

Before testing for the priority.

2) uCOS_II.H:

 The function prototype for OSEventPendMulti() incorrectly declared the

timeout as an INT16U instead of an INT32U since we changed all time delays

and timeouts to now use 32-bit values.

3) All Files:

 Changed the way functions are declared to be consistent with the prototypes in

ucos_ii.h.

 6 of 90

V2.87

(2009/01/07)

This is a major release as it contains changes to some of the elements of data structures as

well as #define configuration constants. Also, some of the functionality has changed

but this should not have any significant impact.

If you are using a Kernel Awareness plug-in for some of the debuggers, you will need to

obtain a newer version of the Kernel Awareness plug-in which is compatible with V2.87

or higher. This is because ASCII strings for names are now referenced by using a pointer

instead of storing the ASCII name in the kernel object.

UPGRADING TO V2.87

You should follow these steps in order to upgrade from a previous version to V2.87.

1) OS_CFG.H:

 You no longer need to specify the „size‟ of ASCII strings used for names. That‟s

because we now store a pointer to the name instead of actually allocating storage

for it in the corresponding kernel object. This was done to significantly reduce the

amount of RAM needed in your application. You will need to enable this feature.

Follow the following table:

This #define … Changed to

OS_EVENT_NAME_SIZE OS_EVENT_NAME_EN

OS_TASK_NAME_SIZE OS_TASK_NAME_EN

OS_FLAG_NAME_SIZE OS_FLAG_NAME_EN

OS_MEM_NAME_SIZE OS_MEM_NAME_EN

OS_TMR_CFG_NAME_SIZE OS_TMR_CFG_NAME_EN

 The new value of these #defines are either 0 (to disable naming the object) or 1

(to enable naming the object).

2) OS_TIME.C:

 OSTimeDly() now accepts a 32-bit argument instead of a 16-bit argument.

This was done to allow longer time delays and also to simplify

OSTimeDlyHMSM(). In most cases, you will not need to change anything in

your code.

 7 of 90

3) OS_CORE.C:

 OS_StrCopy() has been eliminated since it‟s no longer used by µC/OS-II.

You should not have been using this function in your code since it was meant to

be an internal function. This change should thus not cause any problem.

4) OS_CORE.C:

 Added task specific registers. You can have as many as

OS_TASK_REG_TBL_SIZE 32-bit unsigned registers for each task. These

registers ARE NOT the same as the CPU registers; they are more like task

specific variables. These „registers‟ are typically used for such things as „error

codes‟ (or errno in other operating systems). You can also communicate

information to tasks via these registers.

5) OS_MBOX.C:

 Timeouts on OSMboxPend() are now 32-bit values.

6) OS_MUTEX.C:

 Timeouts on OSMutexPend() are now 32-bit values.

7) OS_Q.C:

 Timeouts on OSQPend() are now 32-bit values.

8) OS_SEM.C:

 Timeouts on OSSemPend() are now 32-bit values.

9) OS_TASK.C:

 You can set and get task registers (see item 4 above) by calling

OSTaskRegSet() and OSTaskRegGet(), respectively. Again, task registers

ARE NOT the same as CPU registers.

10) OS_TMR.C:

 OSTmr_Lock() and OSTmr_Unlock() have been replaced with

OSSchedLock() and OSSchedUnlock(), respectively. Now, timers no

longer need to rely on semaphores being available. Also, this allows you to call

other timer services from the timer callback.

 8 of 90

V2.86

(2007/09/12)

This is a major release as it contains a new feature called „Multi-Pend‟ (implemented in

OSEventPendMulti()) which allows a task to pend on multiple objects (semaphores,

mailboxes or queues). If any one of those objects is posted to, the function returns and

indicates which (or all) events posted.

Multi-pend is the only feature added in this version and a number of changes throughout

the code has been implemented in order to support this new feature.

Details on how to use OSEventPendMulti() can be found in the µC/OS-II reference

manual.

UPGRADING TO V2.86

You should follow these steps in order to upgrade from a previous version to V2.86.

Even though only Multi-Pend was added in V2.86, some of the items below are repeated

from previous versions because they are important to follow.

1) Timer Manager:

 Timers MUST now be created by OSTmrCreate() before they can be used. In

V2.82, a timer was created and started when you called OSTmrStart(). Now

you MUST call OSTmrCreate() and then OSTmrStart() to create and start

the timer, respectively.

 It is now your responsibility to delete a timer when it is no longer being used.

 The Timer Manager user-available functions are now:

 OSTmrCreate()

 OSTmrDel()

 OSTmrNameGet()

 OSTmrRemainGet()

 OSTmrStart()

 OSTmrStop()

 To create and start a timer, you need to call OSTmrCreate() and then

OSTmrStart(). When you are done using a timer, you can delete it by calling

OSTmrDel().

 9 of 90

2) TRUE and FALSE changed to OS_TRUE and OS_FALSE:

 µC/OS-II now uses and returns OS_TRUE and OS_FALSE instead of TRUE and

FALSE. If you were using TRUE and FALSE in your application you will either

need to define TRUE and FALSE yourself or change those to OS_TRUE and

OS_FALSE.

3) Create APP_CFG.H:

 As of V2.81, you need to create a file called APP_CFG.H which would reside in

your project. APP_CFG.H is used to hold configuration information about your

project. Specifically, we expect that you place task priorities, task stack sizes and

other application related configuration information. The following page shows an

example of the contents of APP_CFG.H.

4) Include OS_TMR.C in your project:

 As of V2.81, you need to include OS_TMR.C in your builds in order to obtain the

new services provided in OS_TMR.C and avoid compiler warnings/errors.

5) New #defines are needed in OS_CFG.H:

 You will need to include the following #defines (they are found in OS_CFG_R.H,

the reference file for OS_CFG.H). See also the configuration manual:

 OS_APP_HOOKS_EN

 OS_EVENT_MULTI_EN

 OS_TMR_EN

 OS_TMR_CFG_MAX

 OS_TMR_CFG_NAME_SIZE

 OS_TMR_CFG_WHEEL_SIZE

 OS_TMR_CFG_WHEEL_SIZE

 OS_MBOX_PEND_ABORT_EN

 OS_Q_PEND_ABORT_EN

OS_SEM_PEND_ABORT_EN

6) Add OS_TASK_TMR_STK_SIZE:

 If you use the timer manager, you will need to define the size of the timer task

stack, i.e. OS_TASK_TMR_STK_SIZE. This is declared in your project‟s

OS_CFG.H.

7) Add OS_TASK_TMR_PRIO:

 If you use the timer manager, you will need to define the priority of the timer

manager task, i.e. OS_TASK_TMR_PRIO. This is declared in your project‟s

APP_CFG.H.

 10 of 90

8) Place prototypes in OS_CPU.H:

 As of V2.81, it‟s IMPORTANT that you place the prototypes for OSCtxSw(),

OSIntCtxSw() and OSStartHighRdy() in OS_CPU.H. Typically, these

functions would be prototyped as follows but, depending on the compiler, they

may need to be different:

void OSStartHighRdy(void);

void OSIntCtxSw(void);

void OSCtxSw(void);

9) Start using OS_ERR_??? as error return values:

We recommend that you start using the new #define constants for error return

values. All error return values start with OS_ERR_ for consistency.

10) OS????NameGet() and OS????NameSet() not callable from ISRs:

Since OS????NameGet() and OS????NameSet() can no longer be called

from ISRs, make sure your code didn‟t make use of those in ISRs.

11) OSMutexAccept() returns a BOOLEAN:

Since OSMutexAccept() now returns a BOOLEAN make sure you change

your code accordingly.

 11 of 90

CHANGES IN V2.86

os_core.c

OSEventPendMulti() was added.

Optimized OS_EventTaskRdy() and added support for multi-pend.

Optimized OS_EventTaskWait().

Removed OS_EventTOAbort() and added OS_EventTaskWaitMulti(),

OS_EventTaskRemove() and OS_EventTaskRemoveMulti().

Optimized OS_TaskStat().

os_mbox.c

Rearranged OSMboxPend() to support multi-pend.

os_mutex.c

Rearranged OSMutexPend() for consistency.

os_q.c

Rearranged OSQPend() to support multi-pend.

os_sem.c

Rearranged OSSemPend() to support multi-pend.

os_task.c

Made cosmetic changes to OSTaskChangePrio() and added support for

multi-pend.

Added support for multi-pend in OSTaskDel().

ucos_ii.h

 Added support for multi-pend.

 12 of 90

V2.85
(2007/06/15)

In this release, we made some minor changes and are summarized below:

Added OS_APP_HOOKS_EN in OS_CFG.H to allow µC/OS-II to call

application define hook functions.

msg was changed to pmsg.

err was changed to perr.

OS????NameGet() and OS????NameSet() can no longer be called from

ISRs

OSTimeDly() and OSTimeDlyHMSM() now contain checks to prevent them

from being called from an ISR.

OSMutexAccept() now returns a BOOLEAN instead of an INT8U.

Hook functions in port files now should call application specific hooks.

Added new error codes.

 13 of 90

CHANGES IN V2.85

ALL

We removed all checks for OS_VERSION in the code. The reason is that you

should actually upgrade your application when you upgrade your version of

µC/OS-II. The extra checks for OS_VERSION created „pollution‟ in the code

which was not deemed necessary.

Replaced the „magic number‟ (OS_TCB *)1 to OS_TCB_RESERVED when

reserving a TCB.

msg was changed to pmsg. err was changed to perr to reflect that these are

pointers.

os_core.c

OSEventNameGet() and OSEventNameSet() can no longer be called from

an ISR. The reason is to keep ISRs as short as possible. Getting and setting

ASCII names is performed through loops and could increase ISR times. This

change should not cause backwards compatibility issues since names for OS

objects are typically set once when the object is created. If you call

OSEventNameGet() from an ISR, the function will not be performed and you

will get an OS_ERR_NAME_GET_ISR error code. If you call

OSEventNameSet() from an ISR, the function will not be performed and you

will get an OS_ERR_NAME_SET_ISR error code.

os_flag.c

OSFlagNameGet() and OSFlagNameSet() can no longer be called from an

ISR. The reason is to keep ISRs as short as possible. Getting and setting ASCII

names is performed through loops and could increase ISR times. This change

should not cause backwards compatibility issues since names for OS objects are

typically set once when the object is created. If you call OSFlagNameGet()

from an ISR, the function will not be performed and you will get an

OS_ERR_NAME_GET_ISR error code. If you call OSFlagNameSet() from

an ISR, the function will not be performed and you will get an

OS_ERR_NAME_SET_ISR error code.

os_mem.c

In OSMemCreate() we no longer require that a memory block be a multiple of

a pointer size. However, we still require that a memory block contains storage for

at least one pointer.

OSMemNameGet() and OSMemNameSet() can no longer be called from an

ISR. The reason is to keep ISRs as short as possible. Getting and setting ASCII

names is performed through loops and could increase ISR times. This change

 14 of 90

should not cause backwards compatibility issues since names for OS objects are

typically set once when the object is created. If you call OSMemNameGet()

from an ISR, the function will not be performed and you will get an

OS_ERR_NAME_GET_ISR error code. If you call OSMemNameSet() from an

ISR, the function will not be performed and you will get an

OS_ERR_NAME_SET_ISR error code.

os_mutex.c

We now cast OS_MUTEX_KEEP_LOWER_8, OS_MUTEX_KEEP_UPPER_8 and

OS_MUTEX_MUTEX_AVAILABLE to (INT16U) to prevent compiler warnings.

OSMutexAccept() now returns OS_TRUE or OS_FALSE based on whether

the resource was available or not, respectively.

OSMutexQuery() now sets the .OSValue field to OS_TRUE or OS_FALSE

based on whether the resource was available or not, respectively.

os_task.c

OSTaskNameGet() and OSTaskNameSet() can no longer be called from an

ISR. The reason is to keep ISRs as short as possible. Getting and setting ASCII

names is performed through loops and could increase ISR times. This change

should not cause backwards compatibility issues since names for OS objects are

typically set once when the object is created. If you call OSTaskNameGet()

from an ISR, the function will not be performed and you will get an

OS_ERR_NAME_GET_ISR error code. If you call OSTaskNameSet() from

an ISR, the function will not be performed and you will get an

OS_ERR_NAME_SET_ISR error code.

os_time.c

Even though OSTimeDly() and OSTimeDlyHMSM() should never have been

called from ISRs, there were no checks to that effect. This has been corrected and

we now check that OSIntNesting is 0 in order to allow this function to

execute. If called from an ISR, OSTimeDlyHMSM() will return an error code of

OS_ERR_TIME_DLY_ISR.

os_tmr.c

OSTmrNameGet() can no longer be called from an ISR. The reason is to keep

ISRs as short as possible. Getting and setting ASCII names is performed through

loops and could increase ISR times. This change should not cause backwards

compatibility issues since names for OS objects are typically set once when the

object is created. If you call OSTaskNameGet() from an ISR, the function will

not be performed and you will get an OS_ERR_NAME_GET_ISR error code.

 15 of 90

OSTmrStop() now returns OS_TRUE when the timer is stopped even if you

passed an invalid „opt‟ argument or we used the callback argument specified in

the call. In other words, if we stop the timer, we return OS_TRUE.

ucos_ii.h

 Added OS_ERR_??? #define constants for consistency.

Use … Instead of … Value
OS_ERR_NONE OS_NO_ERR 0

OS_ERR_TIMEOUT OS_TIMEOUT 10

OS_ERR_TASK_NOT_EXIST OS_TASK_NOT_EXIST 11

OS_ERR_NAME_GET_ISR 17

OS_ERR_NAME_SET_ISR 18

OS_ERR_MBOX_FULL OS_MBOX_FULL 20

OS_ERR_Q_FULL OS_Q_FULL 30

OS_ERR_Q_EMPTY OS_Q_EMPTY 31

OS_ERR_PRIO_EXIST OS_PRIO_EXIST 40

OS_ERR_PRIO OS_PRIO_ERR 41

OS_ERR_PRIO_INVALID OS_PRIO_INVALID 42

OS_ERR_SEM_OVF OS_SEM_OVF 50

OS_ERR_TASK_DEL OS_TASK_DEL_ERR 60

OS_ERR_TASK_DEL_IDLE OS_TASK_DEL_IDLE 61

OS_ERR_TASK_DEL_REQ OS_TASK_DEL_REQ 62

OS_ERR_TASK_DEL_ISR OS_TASK_DEL_ISR 63

OS_ERR_NO_MORE_TCB OS_NO_MORE_TCB 70

OS_ERR_TIME_NOT_DLY OS_TIME_NOT_DLY 80

OS_ERR_TIME_INVALID_MINUTES OS_TIME_INVALID_MINUTES 81

OS_ERR_TIME_INVALID_SECONDS OS_TIME_INVALID_SECONDS 82

OS_ERR_TIME_INVALID_MS OS_ERR_TIME_INVALID_MS 83

OS_ERR_TIME_ZERO_DLY OS_ERR_TIME_ZERO_DLY 84

OS_ERR_TIME_DLY_ISR 85

OS_ERR_TASK_SUSPEND_PRIO OS_ERR_TASK_SUSPEND_PRIO 90

OS_ERR_TASK_SUSPEND_IDLE OS_ERR_TASK_SUSPEND_IDLE 91

OS_ERR_TASK_RESUME_PRIO OS_ERR_TASK_RESUME_PRIO 100

OS_ERR_TASK_NOT_SUSPENDED OS_ERR_TASK_NOT_SUSPENDED 101

OS_ERR_MEM_INVALID_PART OS_ERR_MEM_INVALID_PART 110

OS_ERR_MEM_INVALID_BLKS OS_ERR_MEM_INVALID_BLKS 111

OS_ERR_MEM_INVALID_SIZE OS_ERR_MEM_INVALID_SIZE 112

OS_ERR_MEM_NO_FREE_BLKS OS_ERR_MEM_NO_FREE_BLKS 113

OS_ERR_MEM_FULL OS_ERR_MEM_FULL 114

OS_ERR_MEM_INVALID_PBLK OS_ERR_MEM_INVALID_PBLK 115

OS_ERR_MEM_INVALID_PMEM OS_ERR_MEM_INVALID_PMEM 116

OS_ERR_MEM_INVALID_PDATA OS_ERR_MEM_INVALID_PDATA 117

OS_ERR_MEM_INVALID_ADDR OS_ERR_MEM_INVALID_ADDR 118

OS_ERR_MEM_NAME_TOO_LONG OS_ERR_MEM_NAME_TOO_LONG 119

OS_ERR_TASK_OPT OS_ERR_TASK_OPT 130

OS_ERR_FLAG_INVALID_PGRP OS_ERR_FLAG_INVALID_PGRP 150

OS_ERR_FLAG_WAIT_TYPE OS_ERR_FLAG_WAIT_TYPE 151

OS_ERR_FLAG_NOT_RDY OS_ERR_FLAG_NOT_RDY 152

OS_ERR_FLAG_INVALID_OPT OS_ERR_FLAG_INVALID_OPT 153

OS_ERR_FLAG_GRP_DEPLETED OS_ERR_FLAG_GRP_DEPLETED 154

The .OSValue field of OS_MUTEX_DATA is now a BOOLEAN instead of an

INT8U.

OSMutexAccept() now returns a BOOLEAN.

 16 of 90

 Hook functions have been changed in the ports as follows. In other words, we

now assume that hook functions are declared in application code INSTEAD of

port code. Hooks are thus enabled when OS_APP_HOOKS_EN > 0 in

OS_CFG.H.

In Hook … Changed From … To …
OSTaskCreateHook() OSView_TaskCreateHook() App_TaskCreateHook()

OSTaskDelHook() App_TaskDelHook()

OSTaskIdleHook() App_TaskIdleHook()

OSTaskStatHook() App_TaskStatHook()

OSTaskSwHook() OSView_TaskSwHook() App_TaskSwHook()

OSTCBInitHook() App_TCBInitHook()

OSTimeTickHook() OSView_TickHook() App_TimeTickHook()

Added a „SAFETY CRITICAL USE‟ section to detect configuration issues

when performing safety critical tests. This section does not generate any code and

is thus harmless.

 17 of 90

V2.84
(2007/01/31)

In this release, we added new functionality to Mailbox, Queue and Semaphore

management.

We also added new #define constants for error return values. For example, you can now

use OS_ERR_TIMEOUT instead of OS_TIMEOUT. In fact, we added OS_ERR_??? for

consistency and you should now always use OS_ERR_??? when checking for error

codes. Note that you can still use the previous #define values since those were kept for

backwards compatibility. However, we might remove those is a future version.

FIXED BUGS IN V2.83

os_task.c

Corrected a subtle bug in OSTaskChangePrio(). We now check if an event

control block exist after readying a task at the new priority.

os_tmr.c

OSTmr_Unlock() was missing in a couple of places in OSTmrStop().

 18 of 90

CHANGES IN V2.84

os_core.c

 We are now locking the scheduler when in OSTimeTick() instead of disabling

interrupts. This reduces interrupt latency when this function is called.

ucos_ii.h

 Added OS_ERR_??? #define constants for consistency. It turns out that not all

error return values started with the prefix OS_ERR_. To correct this, new #define

constants have been added. It‟s highly recommended that you start using the new

OS_ERR_??? error codes instead of their previous counterparts, see table below.

Use … Instead of … Value
OS_ERR_NONE OS_NO_ERR 0

OS_ERR_TIMEOUT OS_TIMEOUT 10

OS_ERR_TASK_NOT_EXIST OS_TASK_NOT_EXIST 11

OS_ERR_MBOX_FULL OS_MBOX_FULL 20

OS_ERR_Q_FULL OS_Q_FULL 30

OS_ERR_Q_EMPTY OS_Q_EMPTY 31

OS_ERR_PRIO_EXIST OS_PRIO_EXIST 40

OS_ERR_PRIO OS_PRIO_ERR 41

OS_ERR_PRIO_INVALID OS_PRIO_INVALID 42

OS_ERR_SEM_OVF OS_SEM_OVF 50

OS_ERR_TASK_DEL OS_TASK_DEL_ERR 60

OS_ERR_TASK_DEL_IDLE OS_TASK_DEL_IDLE 61

OS_ERR_TASK_DEL_REQ OS_TASK_DEL_REQ 62

OS_ERR_TASK_DEL_ISR OS_TASK_DEL_ISR 63

OS_ERR_NO_MORE_TCB OS_NO_MORE_TCB 70

OS_ERR_TIME_NOT_DLY OS_TIME_NOT_DLY 80

OS_ERR_TIME_INVALID_MINUTES OS_TIME_INVALID_MINUTES 81

OS_ERR_TIME_INVALID_SECONDS OS_TIME_INVALID_SECONDS 82

OS_ERR_TIME_INVALID_MS OS_ERR_TIME_INVALID_MS 83

OS_ERR_TIME_ZERO_DLY OS_ERR_TIME_ZERO_DLY 84

OS_ERR_TASK_SUSPEND_PRIO OS_ERR_TASK_SUSPEND_PRIO 90

OS_ERR_TASK_SUSPEND_IDLE OS_ERR_TASK_SUSPEND_IDLE 91

OS_ERR_TASK_RESUME_PRIO OS_ERR_TASK_RESUME_PRIO 100

OS_ERR_TASK_NOT_SUSPENDED OS_ERR_TASK_NOT_SUSPENDED 101

OS_ERR_MEM_INVALID_PART OS_ERR_MEM_INVALID_PART 110

OS_ERR_MEM_INVALID_BLKS OS_ERR_MEM_INVALID_BLKS 111

OS_ERR_MEM_INVALID_SIZE OS_ERR_MEM_INVALID_SIZE 112

OS_ERR_MEM_NO_FREE_BLKS OS_ERR_MEM_NO_FREE_BLKS 113

OS_ERR_MEM_FULL OS_ERR_MEM_FULL 114

OS_ERR_MEM_INVALID_PBLK OS_ERR_MEM_INVALID_PBLK 115

OS_ERR_MEM_INVALID_PMEM OS_ERR_MEM_INVALID_PMEM 116

OS_ERR_MEM_INVALID_PDATA OS_ERR_MEM_INVALID_PDATA 117

OS_ERR_MEM_INVALID_ADDR OS_ERR_MEM_INVALID_ADDR 118

OS_ERR_MEM_NAME_TOO_LONG OS_ERR_MEM_NAME_TOO_LONG 119

OS_ERR_TASK_OPT OS_ERR_TASK_OPT 130

OS_ERR_FLAG_INVALID_PGRP OS_ERR_FLAG_INVALID_PGRP 150

OS_ERR_FLAG_WAIT_TYPE OS_ERR_FLAG_WAIT_TYPE 151

OS_ERR_FLAG_NOT_RDY OS_ERR_FLAG_NOT_RDY 152

OS_ERR_FLAG_INVALID_OPT OS_ERR_FLAG_INVALID_OPT 153

OS_ERR_FLAG_GRP_DEPLETED OS_ERR_FLAG_GRP_DEPLETED 154

 19 of 90

V2.83
(2006/06/02)

In this release, we made significant changes to the timer manager module. Please consult

the Reference Manual for the new APIs of functions OSTmrCreate(), OSTmrDel(),

OSTmrStop() and OSTmrStart().

FIXED BUGS IN V2.82

os_tmr.c

You could not call OSTmrNameGet() and OSTmrRemainGet() when a

timer was in one-shot mode and the timer expired because the timer was

automatically deleted. This has now been fixed because timers are created and

deleted by the user.

CHANGES IN V2.83

os_tmr.c

 When a timer times out, it will no longer be deleted. In other words, it is now

your responsibility to delete unused timers.

 OSTmrStop() no longer deletes the timer.

 You can now safely call OSTmrRemainGet() and OSTmrNameGet()

whenever a timer is created until it gets deleted. In V2.81 and V2.82, you could

not use these functions when a timer was configured in one-shot mode.

 We added an entry in the OS_TMR data structure to allow us to verify that you are

passing a pointer to an OS_TMR structure when you call timer manager services.

 OSTmrStart() now ONLY starts (or restarts) a timer and does NOT create a

timer. A timer must now be created before it can be started.

 You must call OSTmrDel() to delete any unused timers.

 Added OSTmrStateGet() which returns the state of a timer.

 20 of 90

V2.82
(2006/03/24)

This is a minor release. However, we change the name of two (2) API calls:

OSTmrGetName(), OSTmrGetRemain() and, we added an argument to

OSTmrStart().

FIXED BUGS IN V2.81

Fixed an error in OSMutexDel() (see OS_MUTEX.C below).

CHANGES IN V2.82

Miscellaneous:

Changed TRUE and FALSE to OS_TRUE and OS_FALSE. µC/OS-II should not

be dictating the value of TRUE and FALSE.

os_dbg_r.c

Added new constants to monitor the size of some variables and data structures,

specifically related to the new Timer management module introduced in V2.81.

os_flag.c

Added a check in OSFlagPend() to ensure that this function is not called from

an ISR. Note that the documentation clearly warned about this but, we added the

code just to be sure.

os_mbox.c

Added a check in OSMboxPend() to ensure that this function is not called from

an ISR. Note that the documentation clearly warned about this but, we added the

code just to be sure.

In OSMboxPostOpt() we added a new option called

OS_POST_OPT_NO_SCHED which, when set, indicates that you do not want

OSMboxPostOpt() to call the scheduler when you have completed the post.

os_mutex.c

Added a check in OSMutexDel() and the OS_DEL_ALWAYS case to make the

owner of the mutex ready-to-run (if there was an owner). Because of some code

similarities found in OSMutexPost(), we created the local function called

 21 of 90

OSMutex_RdyAtPrio() to perform this operation and thus not increase the

code by too much.

Added a check in OSMutexPend() to ensure that this function is not called

from an ISR. Note that the documentation clearly warned about this but, we

added the code just to be sure.

os_q.c

Added a check in OSQPend() to ensure that this function is not called from an

ISR. Note that the documentation clearly warned about this but, we added the

code just to be sure.

In OSQPostOpt() we added a new option called OS_POST_OPT_NO_SCHED

which, when set, indicates that you do not want OSQPostOpt() to call the

scheduler when you have completed the post.

os_sem.c

Added a check in OSSemPend() to ensure that this function is not called from

an ISR. Note that the documentation clearly warned about this but, we added the

code just to be sure.

os_tmr.c

Changed the name of OSTmrGetName() to OSTmrNameGet() to be

consistent with other similar services.

Changed the name of OSTmrGetRemain() to OSTmrRemainGet() to be

consistent with other similar services.

Added an argument (dly) to OSTmrStart(). This, of course, will make the

compiler issue an error if you previously used the timer manager in V2.81. The

argument specifies an initial delay before the timer enters periodic mode (see

drawing below). If you set the dly to the same value as the period then you will

obtain the same result as in V2.81. If you specify a dly of 0, period will be

used as the initial delay:

dly period

OSTmrStart()

Called

Time

 22 of 90

ucos_ii.h

Added OS_POST_OPT_NO_SCHED and its value is 0x04.

Added .OSTmrDly in the OS_TMR data structure

 23 of 90

V2.81
(2005/09/06)

µC/OS-II now provides support for periodic as well as one-shot timers. This

functionality is found in OS_TMR.C. For more information about this new feature,

consult the “New Features and Services since V2.00” document.

FIXED BUGS IN V2.80

Fixed a number of errors introduced when we increased the number of task to 255.

CHANGES IN V2.81

os_cfg.h (see template in os_cfg_r.h)

Re-arranged the order of #defines in this file.

Added a number of #define constants to support timer management:

OS_ISR_PROTO_EXT

OS_TMR_EN

OS_TMR_CFG_MAX

OS_TMR_CFG_WHEEL_SIZE

OS_TMR_CFG_NAME_SIZE

OS_TMR_CFG_TICKS_PER_SEC

OS_TASK_TMR_STK_SIZE

os_core.c

Added call to OSTmr_Init().

ucos_ii.h

Added OS_TASK_TMR_ID and its value is 65533.

Changed OS_IDLE_PRIO to OS_TASK_IDLE_PRIO

Changed OS_STAT_PRIO to OS_TASK_STAT_PRIO

Added OS_ERR_TMR_??? and OS_TMR_OPT_???.

 24 of 90

Added the OS_TMR, OS_TMR_WHEEL and OS_TMR_CALLBACK data types

needed to support timer management.

 25 of 90

V2.80
(2005/03/21)

This is a big release because µC/OS-II now supports up to 255 tasks.

We also made a number of minor changes related to MISRA C rules.

To support up to 255 tasks, we simply increased the ready list and event wait lists to a

matrix of 16x16 instead of 8x8. In fact, the actual size of the matrix depends on the value

of OS_LOWEST_PRIO in OS_CFG.H. If OS_LOWEST_PRIO is less than or equal to

63, we use an 8x8 matrix and thus µC/OS-II behaves exactly the same as it used to. If

you specify a value for OS_LOWEST_PRIO to be greater than 63, we use the 16x16

matrix as show below.

You should note that the actual size of the matrix depends on OS_LOWEST_PRIO. For

example, if OS_LOWEST_PRIO is 10 then the matrix is actually 2x8 (two bytes of 8

bits). Similarly, if OS_LOWEST_PRIO is set to 47, the matrix will be 6x8. When

OS_LOWEST_PRIO is above 63, we use 16-bit wide entries. For example, if you specify

OS_LOWEST_PRIO to be 100 then the matrix will be 7x16 (7 entries of 16 bits each).

You CANNOT have OS_LOWEST_PRIO at 255 because that value is reserved for

OS_PRIO_SELF.

7

0

0

15

HPT (0)

LPT (254)

NEVER used,

OS_PRIO_SELF

HPT (0)

LPT (63)

OSRdyGrp OSRdyTbl[]

8x8 Max.

OSRdyGrp OSRdyTbl[]
16x16 Max.

OS_LOWEST_PRIO <= 63 OS_LOWEST_PRIO > 63

0 15

0 7

 26 of 90

FIXED BUGS IN V2.77

No bugs were reported in V2.77.

CHANGES IN V2.80

OS_CFG.H (see template in OS_CFG_R.H)

OS_LOWEST_PRIO in OS_CFG.H can now be up to 254 thus supporting up to

255 tasks (including the idle task).

You now need to add the #define OS_FLAGS_NBITS which MUST be

either 8, 16 or 32. This #define defines the number of bits used for event flags.

We REMOVED the type definition of OS_FLAGS and thus, you will also have

to remove it in your OS_CFG.H file.

OS_CORE.C

We removed the OSMapTbl[] and replaced its use in the code with a 1 << n

operation.

Added a new function called OS_SchedNew() to find the new highest priority

task ready-to-run. In other words, this function determines the value of the

variable OSPrioHighRdy. OS_SchedNew() is called by OS_Sched(),

OSIntExit() and OSStart().

ucos_ii.h

Moved the #define OS_VERSION before the #include statements of

OS_CFG.H and OS_CPU.H to allow these files to have definitions based on

which version of µC/OS-II.

Added OS_TASK_OPT_NONE to allow this to be used in

OSTaskCreateExt() instead of 0.

GENERAL

Functions that used char now use INT8U to satisfy one of the MISRA C rules.

 27 of 90

V2.77
(2004/11/29)

This release corrects a number of very minor issues with V2.76.

FIXED BUGS IN V2.76

Bug V2.76-001:
There were a number of typos and incorrect comments that were fixed.

CHANGES IN V2.77

V2.77 adds a few minor enhancements to V2.76. However, none of these enhancements

were critical.

IMPORTANT

The prototypes for OSStartHighRdy(), OSCtxSw() and OSIntCtxSw() are

NOW assumed to be placed in OS_CPU.H since they have been removed from

ucos_ii.h. The reason this was done was to allow different declarations for these

functions. For example, with the IAR ARM compiler, these functions are declared as

follows:

__arm void OSStartHighRdy(void);

__arm void OSCtxSw(void);

__arm void OSIntCtxSw(void);

The „standard‟ declarations should be:

void OSStartHighRdy(void);

void OSCtxSw(void);

void OSIntCtxSw(void);

Please add these prototypes in YOUR os_cpu.h file.

 28 of 90

OS_CFG.H

We now expect the presence of OS_VIEW_MODULE in your OS configuration file. This

is such that you can more easily add µC/OS-View to your product. Defining

OS_VIEW_MODULE to 1 indicates that you will include µC/OS-View in your product‟s

build. Setting OS_VIEW_MODULE to 0 indicates that you will not be using

µC/OS-View.

If you DO NOT add this #define, the compiler will complain via a #error directive

that we added in ucos_ii.h.

OS_CORE.C

We now assign a name to the µC/OS-II idle task and statistics task if

OS_TASK_NAME_SIZE is defined as being greater than 14 in OS_CFG.H. This is used

for debugging purposes. The idle task is called: “uC/OS-II Idle” and the statistics

task is called “uC/OS-II Stat”.

GENERAL

In ALL the functions that pass *err so than an error code is returned to the caller, err

is checked to make sure it‟s not a NULL pointer. The function returns if it is.

Unfortunately, you are not told why because we have no way to give you an error code.

In ALL the functions that pass a pointer, we now check to make sure that the pointer is

not a NULL pointer. This was previously done for some of the pointers but not all.

 29 of 90

V2.76
(2004/02/06)

This release corrects a number of minor issues with V2.75 and also add a new Semaphore

interface function (OSSemSet()).

FIXED BUGS IN V2.75

Bug V2.75-001:
OSTaskDlyResume() makes the same test as the new OSTimeTick() in that if a

task was delayed and was pending on an event then, .OSTCBPendTO will be set to

TRUE indicating that the task timed out.

Bug V2.75-002:
The following functions:

OSTaskChangePrio()

OSTaskDel()

OSTaskDelReq()

OSTaskNameSet()

OSTaskNameGet()

OSTaskResume()

OSTaskSuspend()

All needed to check for „ptcb‟ pointing to (void *)1 in case the task was assigned to

a Mutex PIP.

Bug V2.75-003:
OSTaskDelReq() had a local variable „stat‟ which was declared as a BOOLEAN but

was in fact used as an 8 bit integer. This local variable is now an INT8U.

NEW FEATURE

V2.76 adds a new semaphore function (OSSemSet()) that allows you to set the value

(i.e. count) of the semaphore. This new feature is useful when you use semaphores as a

signaling mechanism. You enable this function by setting OS_SEM_SET_EN to 1 in

OS_CFG.H of your product. See details about this function in the reference manual.

 30 of 90

V2.75
(2003/12/15)

This release corrects a number of issues that were reported by users of V2.70. This

release also contains some changes. Probably the most significant improvement is that

we made sure that µC/OS-II passes LINT without warnings and errors. PC Lint V8 by

Gimpel Software was used to LINT µC/OS-II: http://www.gimpel.com/html/contact.htm.

FIXED BUGS IN V2.70

Bug V2.70-001:
OSTaskSuspend() and OSTaskResume() bug has been corrected. The problem

and correction are described later.

Bug V2.70-002:
In OSMemNameSet(), a return statement was missing for the case when pmem is

NULL. This bug has been corrected.

Bug V2.70-003:
In OSQPostOpt(), the test for msg being NULL must be deleted. This is because, as

of V2.62, it‟s now possible to post NULL pointer messages to a message queue. This has

been corrected.

Bug V2.70-004:

In OSQDel(), the first test should return pevent instead of a NULL pointer upon

failure. This bug has been corrected.

Bug V2.70-005:

OSTaskNameGet() and OSTaskNameSet() were missing an

OS_EXIT_CRITICAL() before the exit of the first test. This has been corrected.

Bug V2.70-006:

In OSFlagPend() the returned flags_rdy was not set correctly if you didn‟t specify

OS_FLAG_CONSUME. This has been corrected.

http://www.gimpel.com/html/contact.htm

 31 of 90

Bug V2.70-007:

In OSTaskQuery() we needed to check to see if the TCB was assigned to a Mutex.

An additional test has thus been added to correct the problem.

Bug V2.70-008:

In OSMutexPend() we removed a &= statement in an if statement for MISRA

compliance.

Bug V2.70-009:

In ucos_ii.h we tested for OS_MAX_EVENTS >= 256 when it should have been

testing for >= 65500.

Bug V2.70-010:

Added test for OS_ARG_CHK_EN in OSTimeDlyHMSM().

 32 of 90

CHANGES IN V2.75

V2.75-001
We added a version number at the top of each file in the main comment header.

V2.75-002
ucos_ii.h now includes os_cfg.h and os_cpu.h. This allows you to compile

µC/OS-II with only those three headers.

V2.75-003
Changed the data type for the variable i in OS_InitRdyList() from INT16U to

INT8U.

V2.75-004
Added cpu_sr = 0 in all the functions that need to use OS_ENTER_CRITICAL()

and OS_EXIT_CRITICAL(). This is done because some compilers generate warnings

when the variable is not directly referenced in the code because it‟s buried inside a

macro. We could have used cpu_sr = cpu_sr but, LINT complained about the fact

that cpu_sr is being assigned a value that has not been initialized.

V2.75-005
Removed the global variable OSIntExitY in OSIntExit() and replaced it with a

local variable called y. Note that you will need to delete the line:

 + sizeof(OSIntExitY)

in the file os_dbg.c of your port file (if this file exits in your port).

IMPORTANT

If you use an OLD µC/OS-II port, you might need to adjust the constant to add to the SP

(Stack Pointer) in OSIntCtxSw(). In other words, if you use a port that adjust the SP

in OSIntCtxSw(), you might need to adjust the constant because your port will NOT

WORK. If your port uses the new scheme outline in the hardcover edition of the

µC/OS-II book, you will not have to do anything as your port will work just fine.

 33 of 90

V2.75-006
Added a flag in OS_TCB (called .OSTCBPendTO) that indicates whether a „pend‟ call

has timed out or not. The addition of this flag was necessary to fix bug V2.70-001.

Details about the changes are described on the next page.

V2.75-007
Added a test in OSTaskCreate() and OSTaskCreateExt() to prevent calling

these functions from an ISR.

V2.75-008
Added a (void) in front of OS_FlagTaskRdy() in OS_FLAG.C and in front of

OS_EventTaskRdy() in OS_MBOX.C, OS_Q.C, OS_SEM.C and OS_MUTEX.C

because the return value is not being used. This was done to prevent LINT warnings.

V2.75-009
Changed #if OS_EVENT_EN > 0 with #if OS_EVENT_EN because LINT was

complaining that the boolean value OS_EVENT_EN was being compared with an integer

value.

 34 of 90

Correction of Bug V2.70-001

Problem description:

If a task pends on an event with a timeout but .OSTCBDly gets decremented to 0 before

the task gets suspended (using OSTaskSuspend()) by another task then, when the

suspension is removed, the task „appears‟ to be waiting forever on the message queue

(when it was waiting with a timeout). Of course, if the queue is posted, the task would be

made ready to run by the post.

Problem correction:

The problem was corrected by adding a variable called .OSTCBPendTO in the OS_TCB.

This variable is set by OSTimeTick() when OSTimeTick() determines that the

delayed task is in fact pending on either a semaphore, mailbox, queue, mutex or event

flag. To find and correct the problem, we drew a state transition diagram of the different

states a task can take as shown in the figure below.

Each large box represents a state a task can be in. A „red‟ state can be entered directly by

a task or from another task. The Stat byte contains the value of the .OSTCBStat field

in the OS_TCB of the task. Dly represents the value of .OSTCBDly and can be either 0

or a non-zero value (i.e. > 0). We assumed message queues in this example but the

 35 of 90

states apply to semaphores, mailboxes, mutexes and event flags. Below is a narration of

the different states.

01 A running task calls OSTimeDly(). .OSTCBStat doesn‟t get changed and

only .OSTCBDly is affected.

02 OSTimeTick() decrements .OSTCBDly to zero and the task is made ready-to-

run.

03 A delayed task gets suspended by another task.

04 The task suspension is removed by another task.

05 OSTimeTick() decrements .OSTCBDly to zero but, since the task is still

suspended, it doesn‟t get readied. Also, the flag .OSTCBPendTO gets set to

FALSE since the task was not pending on anything.

06 A task gets suspended by itself or by another task. Of course, this task is removed

from the ready list but is not waiting for any event.

07 The suspended task is readied by another task that calls OSTaskResume().

08 A task calls OSQPend() and specifies a non-zero timeout value. This means

that the task will be readied if a message is received within the timeout period or,

if the timeout expires.

09 OSTimeTick() is called before a message is received. In this case, the flag

.OSTCBPendTO is set and the OS_STAT_Q flag is cleared by

OSTimeTick(). In previous versions, we didn‟t clear the OS_STAT_Q flag

because we used it to indicate that the task timed out waiting for the event to

occur. Since we now have the .OSTCBPendTO flag, we will use it for this

purpose.

10 A task calls OSQPost() sending a message to the task via a message queue. In

this case, the timeout is cancelled and the flag .OSTCBPendTO is set to FALSE.

11 A task calls OSTaskSuspend() to suspend a task that was already waiting on a

message queue (with timeout).

 36 of 90

12 A task calls OSTaskResume() to resume the task suspended. In this case, the

task is still not ready-to-run because the message queue has not been posted and

the timeout has not expired.

13 A task calls OSQPost() before the timeout expires. However, the task is still

suspended. Note that the OSQPost() cancels the timeout (sets .OSTCBDly to

0) and sets the flag .OSTCBPendTO to FALSE because we didn‟t get a timeout.

Note also that the message is given to the task because it was the highest priority

task waiting for the message, even though the task is still suspended.

14 OSTimeTick() occurs before the message gets posted to the queue. In this

case, OSTimeTick() sets the .OSTCBPendTO flag to TRUE indicating that

the message was not received within the specified timeout period. However, the

task is still unconditionally suspended. If the message is posted before the task is

resumed, the .OSTCBPendTO flag will be cleared.

15 A task calls OSQPend() and specifies a zero timeout value indicating that the

task will wait forever to receive a message.

16 A task calls OSTaskSuspend() to suspend a task that was already waiting on a

message queue (without timeout).

17 A task calls OSTaskResume() to resume the task suspended. In this case, the

task is still not ready-to-run because it‟s waiting for an event that did not occur.

18 A task calls OSQPost(). However, the task is still suspended. The flag

.OSTCBPendTO is set to FALSE because we didn‟t get a timeout. Note also

that the message is given to the task because it was the highest priority task

waiting for the message, even though the task is still suspended.

19 A task calls OSQPost(). The flag .OSTCBPendTO is set to FALSE because

we didn‟t get a timeout.

 37 of 90

V2.70

(2003/04/01)

V2.70 is a considered a major release for a number of reasons:

1) The directory structure for ports has been completely revised. This doesn‟t really

affect the source code for µC/OS-II per-se but it does imply that port files have

been moved around.

2) Include files are now surrounded by brackets instead of double quotes. This

allows you to locate µC/OS-II and the port files anywhere on your computer

system, and let your compile environment resolve include paths. In other words,

you now need to tell your compiler which path to search for include files since

µC/OS-II file no longer assume an absolute path.

3) All calls to standard library functions have been removed from µC/OS-II and

have been replaced with internal OS_???() functions. This was done to

simplify third party certification.

4) Item #3 above has an additional advantage - compilation of µC/OS-II now only

depends on the following three files: os_cpu.h, os_cfg.h and ucos_ii.h.

In other words, if you define the contents of os_cpu.h and os_cfg.h for your

product, you will be able to compile µC/OS-II files standalone.

5) Port files for the 80x86 CPU running in a DOS environment are no longer

included with the distribution. This has been done for two reasons. First, we

don‟t want µC/OS-II to be thought of as „only‟ an 80x86 RTOS since it‟s been

ported to a large number of processors. Second, all the other processor ports are

available on the web site as a free download and now, the 80x86 ports are no

different.

6) The DOS utility TO.EXE is no longer part of the distribution.

7) We now include two new files: os_cfg_r.h and os_dbg_r.c. These are

described later.

8) Initialization of the statistic task now takes 1/10 of a second instead of 1 second.

This has been done to reduce the boot time of an embedded system target.

9) Changed the returned value from OSFlagAccept() and OSFlagPend() to

now return the value of the flags that caused the task to become ready-to-run.

This was done because a lot of users requested this „preferred‟ behavior.

 38 of 90

This release corrects just one minor issue that was reported by a user of V2.62. This

release also contains some minor changes. No new features or functions were added.

Important
ucos_ii.h now includes #include statements to include os_cpu.h and

os_cfg.h. This means that you MUST now REMOVE these #include statements

from includes.h. In other words, ucos_ii.h now has:

#include <os_cpu.h>
#include <os_cfg.h>

and those statements MUST be REMOVED from includes.h otherwise the above

two files would be multiply included

 39 of 90

FIXED MINOR ISSUE WITH V2.62

Bug V2.62-001:
In OSTaskDel(), we had added a statement to clear the stack pointer of the task being

deleted. This statement appears on line 428 and has been since removed. The code was

added originally to show that the stack of a task that has been deleted is no longer valid.

This was to support Kernel Awareness but was found to cause side effects. The line to

delete is:

 ptcb->OSTCBStkPtr = (OS_STK *)0; /* Show that TCB is 'unused' */

 40 of 90

CHANGES IN V2.70

V2.70-001
In V2.70, we changed the directory structure of where ports are placed. This change was

necessary because of the growing confusion about where ports should be placed. The

new directory structure is explained in AN-2002 which can be downloaded from the

Micriµm web site.

V2.70-002
The file OS_DEBUG.C has been renamed to OS_DBG.C. OS_DEBUG.C was introduced

in V2.62.

V2.70-003
Conditional compilation of object names is now checking for greater than 1 (i.e. > 1)

instead of greater than zero (i.e. > 0). The reason is because of the following code

example:

#if OS_EVENT_NAME_SIZE > 1

 pevent->OSEventName[0] = „?‟;

 pevent->OSEventName[1] = OS_ASCII_NUL;

#endif

If OS_EVENT_NAME_SIZE was set to 1 then there would not be sufficient room in the

.OSEventName file to hold the „?‟ as well as the NUL character. This was really not a

big problem in the past because it would be unlikely that you would have allocated only

ONE character to the name of an object.

V2.70-004
Removed all calls to standard library functions and replaced them with local functions

which are found in OS_CORE.C as follows:

Standard Library Function: Has been replaced by:
memcpy() OS_MemCopy()

memset() OS_MemClr()

strlen() OS_StrLen()

strcpy() OS_StrCopy()

 41 of 90

V2.70-005
Added call to function OSDebugInit() in OSInit(). OSDebugInit() is a

function that has been added in V2.70 because some compilers will actually optimize out

all the „const‟ variables in os_dbg.c if they are not referenced by any code. The

„const‟ in os_dbg.c are used by a Kernel Aware debugger and all of the „const‟ are

needed. OSDebugInit() is a function that really doesn‟t do anything except reference

the „const‟ variables in os_dbg.c to prevent the compiler from optimizing them out.

Of course, if OS_DEBUG_EN is set to 0 in os_cfg.h then OSDebugInit() is not

called and is thus not needed.

V2.70-006
Changed the name of all variables called „pdata‟ and „data‟ to more appropriate

variable names. The reason for this change is that some 8051 compilers reserve the

words pdata and data for storage classes.

V2.70-007
ucos_ii.h now includes #include statements to include os_cpu.h and

os_cfg.h and thus, you MUST now REMOVE these include statements from the

project‟s master include file, includes.h to prevent double inclusion of os_cpu.h

and os_cfg.h in your project. Because of this change, all of the µC/OS-II source files

now include ucos_ii.h instead of includes.h.

V2.70-008
Include files are now surrounded by brackets instead of double quotes. This allows you

to locate µC/OS-II and the port files anywhere on your computer system, and let your

compile environment resolve include paths. In other words, you now need to tell your

compiler which path to search for include files since µC/OS-II file no longer assume an

absolute path.

V2.70-009
Changed OSStatInit() and OS_TaskStat() so that the statistic task only needs

1/10 of a second to determine the CPU capacity. This change was done to speed up the

boot time of an embedded system.

V2.70-010
Changed the returned value from OSFlagAccept() and OSFlagPend() to now

return the value of the flags that caused the task to become ready-to-run. This was done

because a lot of users requested this „preferred‟ behavior.

 42 of 90

V2.62
(2003/01/15)

V2.62 is a simple maintenance release. The release corrects a few very minor issues that

were reported by users and also, contains some changes to better support Kernel Aware

debuggers. No new features or functions were added.

FIXED MINOR ISSUES WITH V2.61

Bug V2.61-001:
In OS_FLAG.C, the second OS_ENTER_CRITICAL() in

OSFlagPendGetFlagsRdy() needed to be changed to

OS_EXIT_CRITICAL(). This problem has been corrected.

The BAD code was:

OS_FLAGS OSFlagPendGetFlagsRdy (void)

{

 #if OS_CRITICAL_METHOD == 3

 OS_CPU_SR cpu_sr;

 #endif

 OS_FLAGS flags;

 OS_ENTER_CRITICAL();

 flags = OSTCBCur->OSTCBFlagsRdy;

 OS_ENTER_CRITICAL();

 return (flags);

}

and should have been:

OS_FLAGS OSFlagPendGetFlagsRdy (void)

{

 #if OS_CRITICAL_METHOD == 3

 OS_CPU_SR cpu_sr;

 #endif

 OS_FLAGS flags;

 OS_ENTER_CRITICAL();

 flags = OSTCBCur->OSTCBFlagsRdy;

 OS_EXIT_CRITICAL();

 return (flags);

}

 43 of 90

Bug V2.61-002:
In OS_MEM.C, the following code on line #242 was:

if (len > (OS_EVENT_NAME_SIZE - 1)) {

and should have been:

if (len > (OS_MEM_NAME_SIZE - 1)) {

Bug V2.61-003:
In OS_CORE.C, OS_TaskStatStkChk() didn't check for a task that was

assigned to a MUTEX and thus attempted to compute the stack size of an invalid task.

The correct code for this function is:

#if (OS_TASK_STAT_STK_CHK_EN > 0) && (OS_TASK_CREATE_EXT_EN > 0)

void OS_TaskStatStkChk (void)

{

 OS_TCB *ptcb;

 OS_STK_DATA stk_data;

 INT8U err;

 INT8U prio;

 for (prio = 0; prio <= OS_IDLE_PRIO; prio++) {

 err = OSTaskStkChk(prio, &stk_data);

 if (err == OS_NO_ERR) {

 ptcb = OSTCBPrioTbl[prio];

 if (ptcb != (OS_TCB *)0) { /* Make sure task 'ptcb' is ... */

 if (ptcb != (OS_TCB *)1) { /* ... still valid. */

#if OS_TASK_PROFILE_EN > 0

 #if OS_STK_GROWTH == 1

 ptcb->OSTCBStkBase = ptcb->OSTCBStkBottom + ptcb->OSTCBStkSize;

 #else

 ptcb->OSTCBStkBase = ptcb->OSTCBStkBottom - ptcb->OSTCBStkSize;

 #endif

 ptcb->OSTCBStkUsed = (INT32U)stk_data.OSUsed; /* Store the number of bytes used */

#endif

 }

 }

 }

 }

}

#endif

Bug V2.61-004:
In OS_CORE.C, OS_TaskStatStkChk() had an error computing the stack base.

The code presented in V2.61-003 above corrects the issue.

 44 of 90

CHANGES IN V2.62

V2.62-001
In V2.62, we removed the „debug‟ code from OS_CORE.C and created a NEW file

called OS_DEBUG.C. On other words, in V2.61, there were a number of „const‟

variables that were added to better support kernel aware debuggers. These consts have

been moved to the new file OS_DEBUG.C for two reasons:

1) If you don‟t have a kernel aware debugger, OS_CORE.C would have added about

100 bytes of code that would serve no purpose. By moving the const to

OS_DEBUG.C, if you don‟t have a kernel aware debugger, you don‟t need to compile

and link OS_DEBUG.C with your µC/OS-II based application.

2) Some compilers (such as the IAR) compiles-out code or constants that don‟t appear to

be used anywhere. In the case of the debug variables, the variables reside in ROM

and are only there for the debugger. In other words, they serve no other purpose for

µC/OS-II based applications and some compilers would be „smart‟ enough to not

include them. To prevent this from happening and thus make the variable available

for the debugger, the debug variable were placed in OS_DEBUG.C so that you can

use compiler specific directives to prevent this type of optimization. However, these

directives are very compiler specific and could thus change from one compiler to

another. This would cause compatibility problems if these directives were placed in

OS_CORE.C because OS_CORE.C is supposed to be compiler and processor

independent. Having a separate file (OS_DEBUG.C) solves this problem because the

file can be associated with the PORT and not the processor independent code.

NOTE

This all means that a PORT should now contain OS_DEBUG.C if you use a Kernel

Aware Debugger that requires the „const‟ provided in OS_DEBUG.C. In fact, you might

have to modify OS_DEBUG.C based on the compiler you are using.

V2.62-002
In OS_MUTEX.C, there were a couple of places where some of the MISRA C rules had

not been followed (in OSMutexPend() and OSMutexPost()).

V2.62-003
Added „tags‟ to structures.

 45 of 90

V2.62-004
Added OSEndianessTest const in OS_DEBUG.C to allow the debugger to

automatically determine whether the processor is little endian or big endian.

 46 of 90

V2.61
(2002/10/20)

V2.61 is a simple maintenance release and no run-time bugs were found in µC/OS-II

V2.60. The release only corrects a few very minor issues that mostly affected kernel

awareness support, and adds a bit of internal code. No new features or functions were

added.

FIXED MINOR ISSUES WITH V2.60

Bug V2.60-001:
In OS_CORE.C, the following ROM constant was set to:

INT16U const OSTaskStatStkChkEn = OS_TASK_STAT_EN;

And should have been:

INT16U const OSTaskStatStkChkEn = OS_TASK_STAT_STK_CHK_EN;

Bug V2.60-002:
In uCOS_II.H, the following code was:

#if OS_EVENT_NAME_SIZE > 0

INT8U OSEventNameGet(OS_EVENT *pevent, char *pname, INT8U *err);

void OSEventNameSet(OS_EVENT *pevent, char *pname, INT8U *err);

#endif

and should have been:

#if (OS_EVENT_EN > 0) && (OS_EVENT_NAME_SIZE > 0)

INT8U OSEventNameGet(OS_EVENT *pevent, char *pname, INT8U *err);

void OSEventNameSet(OS_EVENT *pevent, char *pname, INT8U *err);

#endif

 47 of 90

Bug V2.60-003:
In uCOS_II.H, the following code was:

#if OS_FLAG_NAME_SIZE > 0

INT8U OSFlagNameGet(OS_FLAG_GRP *pgrp, char *pname, INT8U *err);

void OSFlagNameSet(OS_FLAG_GRP *pgrp, char *pname, INT8U *err);

#endif

and should have been:

#if (OS_FLAG_EN > 0) && (OS_FLAG_NAME_SIZE > 0)

INT8U OSFlagNameGet(OS_FLAG_GRP *pgrp, char *pname, INT8U *err);

void OSFlagNameSet(OS_FLAG_GRP *pgrp, char *pname, INT8U *err);

#endif

Bug V2.60-004:
In OS_MEM.C, the following code was missing in OS_MemInit(), for the last

OS_MEM element:

#if OS_MEM_NAME_SIZE > 0

 (void)strcpy(pmem->OSMemName, "?");

#endif

Bug V2.60-005:
In OS_CORE.C, added conditional compilation for the following prototype:

#if OS_TASK_STAT_EN > 0

static void OS_InitTaskStat(void);

#endif

ADDED CODE

Added V2.61-001:
In OS_CORE.C, added the following ROM constant for kernel awareness support:

 OSMemSize = sizeof(OS_MEM);

 48 of 90

V2.60
(2002/09/28)

Changes were made to V2.52 for the following reasons:

a) To fix minor issues with V2.52.

b) To simplify FAA Level A certification by removing all MCDC (Modified Condition

Decision Coverage).

c) To follow most of the guidelines of The Motor Industry Software Reliability

Association “Guidelines for the use of the C language in vehicle based software”.

d) To add support for kernel awareness.

e) To directly support µC/OS-View.

f) Added new features.

g) Made some changes to the code.

 49 of 90

FIXED ISSUES WITH V2.52

Bug V2.52-001:
In OS_CORE.C, function OS_InitMisc(), there is no need to test

OS_TASK_CREATE_EXT_EN:

 #if (OS_TASK_STAT_EN > 0) && (OS_TASK_CREATE_EXT_EN > 0)

 OSIdleCtrRun = 0L;

 OSIdleCtrMax = 0L;

 OSStatRdy = FALSE;

 #endif

The correct code is thus:

 #if OS_TASK_STAT_EN > 0

 OSIdleCtrRun = 0L;

 OSIdleCtrMax = 0L;

 OSStatRdy = FALSE;

 #endif

Bug V2.52-002:
In OS_TASK.C, function OSTaskDel(), the variable self was never used. The

variable is now removed.

Bug V2.52-003:
In OS_TASK.C, function OSTaskStkChk() was missing a test. The incorrect

code was:

 ptcb = OSTCBPrioTbl[prio];

 if (ptcb == (OS_TCB *)0) {

 OS_EXIT_CRITICAL();

 return (OS_TASK_NOT_EXIST);

 }

The correct code is:

 ptcb = OSTCBPrioTbl[prio];

 if (ptcb == (OS_TCB *)0 || ptcb == (OS_TCB *)1) {

 OS_EXIT_CRITICAL();

 return (OS_TASK_NOT_EXIST);

 }

 50 of 90

Bug V2.52-004:
In OS_MUTEX.C, function OSMutexPost() the condition to check to see if the

current task is the owner of the mutex has been changed from:

 if (OSTCBCur->OSTCBPrio != pip &&

 OSTCBCur->OSTCBPrio != prio) {

 OS_EXIT_CRITICAL();

 return (OS_ERR_NOT_MUTEX_OWNER);

 }

To:

 if (OSTCBCur != (OS_TCB *)pevent->OSEventPtr) {

 OS_EXIT_CRITICAL();

 return (OS_ERR_NOT_MUTEX_OWNER);

 }

This change allows a task to obtain multiple mutexes. A task could thus have the

following code:

 Acquire Mutex #1;

 Acquire Mutex #2;

 Release Mutex #2;

 Release Mutex #1;

Mutexes MUST be released in the same order as they were acquired.

Bug V2.52-005:
In OS_MUTEX.C, the function OSMutexPend() was changed to allow a mutex

owner to pend on another kernel object such as a semaphore. In other words, a task

could have the following code:

 Acquire Mutex; /* Mutex is available, task now owns it */

 Acquire Semaphore; /* Semaphore is NOT available, suspend task! */

 .

 .

Then, a high priority task that would call OSMutexPend() on the same mutex

would notice that the mutex owner has a lower priority than the task that needs the

mutex. OSMutexPend() would then raise the priority of the task that owns the

mutex and will notice that the task is also waiting on a semaphore.

OSMutexPend() would then change the priority of the mutex owner in the

semaphore wait list.

 51 of 90

SIMPLIFYING ‘FAA LEVEL A’ CERTIFICATION

Changes were made to V2.52 to remove all MCDC (Modified Condition Decision

Coverage). MCDCs are basically conditionals with multiple possible outcomes. For

example, in the following code, there are eight (8) possible outcomes based on the

different values of a, b, c, d, e and f:

if (a == b && c == d && e == f) {

 /* Conditions met */

}

A better way to write the above code (from a certification perspective) is shown below:

if (a == b) {

 if (c == d) {

 if (e == f) {

 /* Conditions met */

 }

 }

}

I went through all the µC/OS-II code and removed the MCDCs. Of course, the code

behaves exactly the same as before.

 52 of 90

FOLLOWED MOST OF THE MISRA GUIDELINES

MISRA stands for “The Motor Industry Software Reliability Association” and this

association published back in April 1998, a list of 127 guidelines for programming

applications using the C programming language. You can obtain this document by

visiting:

http://www.misra.org.uk

The document is called:

 “Guidelines For The Use Of The C Language In Vehicle Based Software”

 ISBN 0 9524156 9 0

It so happens that µC/OS-II was written by following most of the MISRA guidelines

even before the guidelines were ever published. At this time, µC/OS-II is not „compliant‟

with the guidelines but simply follows most of them.

One of the most significant changes to µC/OS-II‟s code is the removal of assignments

inside conditionals. For instance, the following code:

if ((pevent->OSEventTbl[y] &= ~bitx) == 0) {

 /* … */

}

Has been replaced by:

pevent->OSEventTbl[y] &= ~bitx;

if (pevent->OSEventTbl[y] == 0) {

 /* … */

}

http://www.misra.org.uk/

 53 of 90

SUPPORT OF KERNEL AWARE DEBUGGERS

Variables and constants have been added to help support kernel aware debuggers.

Specifically, a number of variables can be queried by a debugger to find out about

compiled-in options. For example, the debugger can find out the size of an OS_TCB,

µC/OS-II‟s version number, the size of an event flag group (OS_FLAG_GRP) and much

more. Those variables are enabled by OS_DEBUG_EN in OS_CFG.H.

SUPPORT OF µC/OS-View

Variables in OS_TCB have been added (see OS_TASK_PROFILE_EN) to support

profiling tools such as µC/OS-View.

Also OS_TaskStat() can now check the stack of each of the active tasks (see

OS_TASK_STAT_STK_CHK_EN).

An OS_TCB can also contain the name of each task which can then be displayed on the

µC/OS-View Windows application.

µC/OS-View can „step‟ tick interrupts one at a time. In other words, through a command

sent by a user of µC/OS-View, µC/OS-II can process one tick at a time. Each tick

requires a user to press a key from the µC/OS-View application.

ADDED NEW FEATURES

1) Find out which flag(s) caused task to wakeup.
Added the function OSFlagPendGetFlagsRdy() (file OS_FLAG.C) to allow to

determine which flag(s) caused the current task to become ready. In other words, you

will now be able to know what event flag(s) caused the pending task to wake up.

2) Posting NULL pointers to queues.
It is now possible to send NULL pointer message through queues. OSQPost() and

OSQPostFront() no longer blocks NULL pointers from being deposited into

queues. This means that OSQPend() will thus be able to receive NULL pointer

messages. You should now check the status of the err argument to determine

whether the return from the pend was caused by a timeout or the actual reception of a

message.

Because of this change, I had to change the API for OSQAccept() so that it returns

an error code indicating the outcome of the call.

 54 of 90

3) Assigning names to Tasks and other kernel objects.
It is now possible to assign names to Tasks, Memory Partitions, Semaphores,

Mutexes, Event Flags, Mailboxes and Queues. The names are useful when

debugging applications. You assign names by calling one of the following functions:

OSEventNameSet()

OSFlagNameSet()

OSMemNameSet()

OSTaskNameSet()

You can obtain the name of a task or a kernel object by calling the following

functions:

OSEventNameGet()

OSFlagNameGet()

OSMemNameGet()

OSTaskNameGet()

This version doesn‟t allow you to manipulate kernel objects using names. For

example, you can‟t delete a task by specifying its name, you can‟t post to a queue by

specifying the queue by its name, etc.

4) Disable calls to OSTaskSwHook() and OSTimeTickHook()
It is now possible to disable (at compile time) the need to have the functions

OSTaskSwHook() and OSTimeTickHook(). This feature was requested

because of the overhead involved in calling empty functions during a context switch

and also every tick.

To disable OSTaskSwHook(), simply set OS_TASK_SW_HOOK_EN to 0 in

OS_CFG.H. Of course, the port (OS_CPU_A.ASM) for the processor you are using

must not call OSTaskSwHook().

To disable OSTimeTickHook(), simply set OS_TIME_TICK_HOOK_EN to 0 in

OS_CFG.H.

5) Added variables in OS_TCB to allow profiling
Variables have been added to OS_TCB to allow each task to be profiled. In other

words, µC/OS-II contains variables that register the number of time a task is

„switched-in‟, how long a task takes to execute, how much stack space each task

consumes and more. These variables have been added to better support µC/OS-View

and other profiling tools.

 55 of 90

6) Added tick stepping support for µC/OS-View
µC/OS-View can now „halt‟ µC/OS-II‟s tick processing and allow you to issue „step‟

commands from µC/OS-View. In other words, µC/OS-View can prevent µC/OS-II

from calling OSTimeTick() so that timeouts and time delays are no longer

processed. However, though a keystroke from µC/OS-View, you can execute a single

tick at a time. If enabled, OSTimeTickHook() is still executed at the regular tick

rate in case you have time critical items to take care of in your application.

7) Added new #defines in OS_CFG.H
Instead of edition your OS_CFG.H, I recommend that you copy one of the

OS_CFG.H files provided with the V2.60 release and then modify it to satisfy your

application requirements.

OS_DEBUG_EN

This #define adds ROM constants to help support kernel aware debuggers. Specifically, a

number of named ROM variables can be queried by a debugger to find out about compiled-in

options. For example, the debugger can find out the size of an OS_TCB, µC/OS-II‟s version

number, the size of an event flag group (OS_FLAG_GRP) and much more.

OS_EVENT_NAME_SIZE

This #define determines the size of ASCII strings used to name either semaphores, mutexes,

mailboxes and queues. If set to 0, this feature will be disabled: no RAM will be allocated and the

functions OSEventNameGet() and OSEventNameSet() will not be compiled. If set to a

non-zero value, it determines the number of bytes allocated for the name. Please note that you

need to accommodate for the NUL character and if you do use a non-zero value, you should have a

minimum of 2 for this value.

OS_FLAG_NAME_SIZE

This #define determines the size of ASCII strings used to name event flag groups. If set to 0,

this feature will be disabled: no RAM will be allocated and the functions OSFlagNameGet()

and OSFlagNameSet() will not be compiled. If set to a non-zero value, it determines the

number of bytes allocated for the name. Please note that you need to accommodate for the NUL

character and if you do use a non-zero value, you should have a minimum of 2 for this value.

OS_MEM_NAME_SIZE

This #define determines the size of ASCII strings used to name memory partitions. If set to 0,

this feature will be disabled: no RAM will be allocated and the functions OSMemNameGet() and

OSMemNameSet() will not be compiled. If set to a non-zero value, it determines the number of

bytes allocated for the name. Please note that you need to accommodate for the NUL character and

if you do use a non-zero value, you should have a minimum of 2 for this value.

OS_TASK_NAME_SIZE

This #define determines the size of ASCII strings used to name tasks. If set to 0, this feature

will be disabled: no RAM will be allocated and the functions OSTaskNameGet() and

OSTaskNameSet() will not be compiled. If set to a non-zero value, it determines the number

of bytes allocated for the name. Please note that you need to accommodate for the NUL character

and if you do use a non-zero value, you should have a minimum of 2 for this value.

 56 of 90

OS_TASK_PROFILE_EN

This #define is used to allocate storage for variables used for run-time task profiling. These

variables are used by µC/OS-View and some kernel aware debuggers.

OS_TASK_STAT_STK_CHK_EN

This #define allows the statistic task to do run-time checking of all the stacks of all the active

tasks. In other words, when set to 1, OS_TaskStat() calls the function

OS_TaskStatStkChk(). Of course, for this to happen, OS_TASK_STAT_EN must also be

set to 1.

OS_TASK_SW_HOOK_EN

It is now possible to disable (at compile time) the need to have the functions OSTaskSwHook().

This feature was requested because of the overhead involved in calling empty functions during a

context switch and also every tick. To disable OSTaskSwHook(), simply set

OS_TASK_SW_HOOK_EN to 0 in OS_CFG.H. Of course, the port (OS_CPU_A.ASM) for the

processor you are using must not call OSTaskSwHook().

OS_TICK_STEP_EN

µC/OS-View can now ‘halt’ µC/OS-II’s tick processing and allow you to issue ‘step’ commands

from µC/OS-View. In other words, µC/OS-View can prevent µC/OS-II from calling

OSTimeTick() so that timeouts and time delays are no longer processed. However, though a

keystroke from µC/OS-View, you can execute a single tick at a time. If

OS_TIME_TICK_HOOK_EN (see below) is set to 1, OSTimeTickHook() is still executed at

the regular tick rate in case you have time critical items to take care of in your application.

OS_TIME_TICK_HOOK_EN

It is now possible to disable (at compile time) the need to have the functions

OSTimeTickHook(). This feature was requested because of the overhead involved in calling

empty functions during a context switch and also every tick. To disable OSTimeTickHook(),

simply set OS_TIME_TICK_HOOK_EN to 0 in OS_CFG.H.

CHANGES

1) Added ‘extern C’ in uCOS_II.H
An “extern C” statement has been added to allow you to compile µC/OS-II using a

C++ compiler.

2) Renamed ALL files to lower case
All the µC/OS-II files have been renamed to lower case to make it easier to compile

under UNIX environments.

3) Changed the structure of OSTaskChangePrio()
I changed the structure of the code for OSTaskChangePrio() to reduce the

indentation, simplify and make the code cleaner. I also removed the re-enabling of

 57 of 90

interrupts when computing x, y, bitx and bity. There is thus, there is no need to

„reserve‟ the OSTCBPrioTbl[] entry by setting it to (OS_TCB *)1.

4) Assigning a NULL pointer to OSTCBStkPtr
I now assign a NULL pointer to OSTCBStkPtr when the free list of TCBs is created

and when a task is deleted.

5) Posting NULL pointers to queues.
Because it is now possible to post NULL pointers to queues, I had to change the API

for OSQAccept() so that it returns an error code indicating the outcome of the call.

6) Removed assignments inside if () statements.
Code like shown below:

if ((pevent->OSEventTbl[y] &= ~bitx) == 0) {

 /* … */

}

Has been replaced by:

pevent->OSEventTbl[y] &= ~bitx;

if (pevent->OSEventTbl[y] == 0) {

 /* … */

}

7) Removed MCDCs.
Code like shown below:

if (a == b && c == d && e == f) {

 /* Conditions met */

}

Has been replaced by the following code:

if (a == b) {

 if (c == d) {

 if (e == f) {

 /* Conditions met */

 }

 }

}

 58 of 90

8) Added memset() to clear RAM
Added calls to memset() to clear (i.e. initialize) the OSTCBPrioTbl[],

OSTCBTbl[], OSMemTbl[], OSFlagTbl[] and OSEventTbl[]. The

reason memset() was used was for speed and to reduce code size. These tables are

cleared during initialization to prevent a kernel aware debugger to display un-

initialized values.

In most cases, the initialization code for the different kernel objects has also been

reduced.

 59 of 90

V2.52
(2002/01/26)

This release is for the new edition of the book: MicroC/OS-II, The Real-Time Kernel, 2
nd

Edition.

V2.52 fixes minor bugs reported in V2.51.

Bug V2.51-003:
In uCOS_II.H, the following code was corrected as follows:

#ifndef OS_FLAG_QUERY_EN

 #error "OS_CFG.H, Missing OS_FLAG_DEL_EN: Include code for OSFlagQuery()"

 needs to be:

#ifndef OS_FLAG_QUERY_EN

#error "OS_CFG.H, Missing OS_FLAG_QUERY_EN: Include code for OSFlagQuery()"

Bug V2.51-002:
In OS_Q.C, the following code was corrected as follows:

The function OSQQuery() contains a BUG in the following code which is towards

the end of the function.

pq = (OS_Q *)pevent->OSEventPtr;

if (pq->OSQEntries > 0) {

 pdata->OSMsg = pq->OSQOut; /* Get next message to return if available */

} else {

 pdata->OSMsg = (void *)0;

}

The CORRECT code is shown below. Note that pq->OSQOut was missing the *.

pq = (OS_Q *)pevent->OSEventPtr;

if (pq->OSQEntries > 0) {

 pdata->OSMsg = *pq->OSQOut; /* Get next message to return if available */

} else {

 pdata->OSMsg = (void *)0;

}

 60 of 90

Bug V2.51-001:

In OS_CPU_A.ASM, the following code was corrected as follows:

The NEW ISRs MUST check to see if OSIntNesting == 1 BEFORE you save the

SP in the current task's OS_TCB. The incorrect 'pseudo' code is:

 OSTCBCur->OSTCBStkPtr = SP /* Save SP onto current task's stack */

 and should be:

 if (OSIntNesting == 1) {

 OSTCBCur->OSTCBStkPtr = SP /* Save SP onto current task's stack */
 }

The reason we need this change is that we don't want to save the current value of SP if

the ISR is for a nested ISR!

V2.52 adds a few minor changes to V2.51.

OS_CORE.C:

I decided to split OSInit() into calls to multiple functions to make the code

cleaner. The new functions should be self-explanatory:

static void OS_InitEventList(void);

static void OS_InitMisc(void);

static void OS_InitRdyList(void);

static void OS_InitTaskIdle(void);

static void OS_InitTaskStat(void);

static void OS_InitTCBList(void);

In OSIntEnter(), I removed the OS_ENTER_CRITICAL() and

OS_EXIT_CRITICAL() macros because it is assumed that OSIntEnter() will

be called with interrupts disabled. Also, I added a check to make sure OSRunning

is set to TRUE.

In OSIntExit(), I added a check to make sure OSRunning is set to TRUE.

In OSTimeTick(), I added a check to make sure OSRunning is set to TRUE

before going through the OS_TCBs.

In OS_TaskStat(), I changed the equation to prevent overflowing the calculation

on very fast CPUs. The equation was written as:

CPU Usage (%) = 100 – 100 * OSIdleCtr / OSIdleCtrMax;

 61 of 90

Because the compiler would first perform the 100 * OSIdleCtr

operation, an OSIdleCtr greater than 42,949,763 would overflow the

calculation and thus report an incorrect result. The equation is now written as:

CPU Usage (%) = 100 – OSIdleCtr * (OSIdleCtrMax / 100);

This allows OSIdleCtr to reach 4,294,967,295 (i.e. 232-1) before the

equation fails. I don‟t expect this to happen for a while since OSIdleCtr is

incremented in a loop. The loop contains instructions that would consume a

few CPU cycles each iteration.

OS_MBOX.C:

In OSMboxPend() (OS_MBOX.C), I moved the check for OSIntNesting at the

beginning of the function because you should NEVER call OSMboxPend() from an

ISR.

OS_Q.C:

In OSQPend() (OS_Q.C), I moved the check for OSIntNesting at the beginning

of the function because you should NEVER call OSQPend() from an ISR.

OS_SEM.C:

In OSSemPend() (OS_SEM.C), I moved the check for OSIntNesting at the

beginning of the function because you should NEVER call OSSemPend() from an

ISR.

 62 of 90

V2.51
(2001/06/09)

Two weeks ago, I released V2.05 and today, I found a bug in it (bug

V205-001). I decided to slightly change the numbering system of

releases. Complex releases (like V2.04 to V2.05) will now increase by

0.10 and minor (bug fixes or slight improvements) will now be

increasing by 0.01. This means that V2.51 is now called V2.50 and

with this bug fix, the release is V2.51. The reason this is done is to

allow you to call OSVersion() and get the proper release number. If

I didn‟t change the numbering system, I would have had to call the

release with the bug correction V2.06. I was reserving such releases as

major releases.

Bug V2.51-001:

 In the NEW port file, an ISR MUST first check to see if

OSIntNesting == 1 before we save the SP in the current task

OS_TCB. This bug only applies to the NEW algorithm for the port

files and thus does NOT affect previous ports.

See New Algorithm For Ports at the end of the V2.51 notes.

 63 of 90

V2.51 is a big upgrade for µC/OS-II for the following reasons:

1) In this release, I added Event Flags (see OS_FLAG.C). Event flags are

described in AN-1007 which can be downloaded from www.Micrium.com.

2) I received numerous e-mails requesting to reduce the footprint of µC/OS-II to

a minimum. To address this issue, I added a number of #define constants

in OS_CFG.H which allow you to take out most of the features in µC/OS-II

that you might not be using. Specifically, there are #defines to remove the

code for OS???Accept(), OS???Query(), OS???Post(),

OSSchedLock() and OSSchedUnlock() and more.

3) This release comes with NEW ports for the Intel 80x86. These ports have

been revised to REMOVE the dependency on compilers. Specifically, you no

longer need to change the function OSIntCtxSw() in order to adjust the

value of the Stack Pointer (i.e. the SP) register based on compiler options.

The modification to accomplish this feature can ALSO be added to most

processor ports!

WARNING
If you use the NEW port files in your product you WILL need to change ALL

your Interrupt Service Routines (ISRs) to handle the new way the port works.

See New Algorithm For Ports at the end of the V2.51 notes.

4) All µC/OS-II internal functions are now prefixed with OS_ instead of OS.

This allows you to immediately determine that these functions should NOT be

called by your application. Also, these functions have been moved at the end

of their respective file to get them „out-of-the-way‟.

5) OS_TaskIdle() now calls OSTaskIdleHook() to allow you to do such

things as STOP the CPU to conserve power when running the idle task. You

will need to add code in OSTaskIdleHook() to execute whatever is

necessary for your CPU to enter it‟s power down mode.

http://www.micrium.com/

 64 of 90

6) I added OSMboxPostOpt() and OSQPostOpt(). The new calls allow

you to „broadcast‟ a message to all tasks waiting on either a message mailbox

or a message queue. In addition, OSQPostOpt() can replace both

OSQPost() AND OSQPostFront(). This was done to further reduce the

amount of code space needed by µC/OS-II. In other words, you can start

using OSQPostOpt() INSTEAD of OSQPost() and OSQPostFront()

and thus save a significant amount of code space.

7) Added #error directives in uCOS_II.H to have the compiler complain

whenever there are missing #defines in your application. This will be

useful to ensure that you have not forgotten any of the NEW #defines

added in V2.51.

8) Previous versions required that you declared a minimum of 2 event control

blocks, 2 message queues, and 2 memory partitions. V2.51 now allows you to

reduce the RAM footprint by allowing you to declare only ONE of each of the

data structures mentioned (and well as only 1 event flag group). In other

words, you can now specify in OS_CFG.H:

#define OS_MAX_EVENTS 1

#define OS_MAX_FLAGS 1

#define OS_MAX_MEM_PART 1

#define OS_MAX_QS 1

9) All conditional compilation is now done as follows:

#if condition_name > 0

instead of:

#if condition_name

The condition name is checked for a non-zero value to enable the code.

This will allow the compiler to complain in case you forget to define

condition_name.

 65 of 90

10) V2.51 correct the four know bugs that were reported in V2.04.

V2.04-001:
The wrong argument was being passed to the call OSTaskCreateHook()

in OSTCBInit(). The bad code was:

OSTaskCreateHook(OSTCBPrioTbl[prio]);

It is now:

OSTaskCreateHook(ptcb);

V2.04-002:
The test in OSMutexPost() to see if the posting task owns the MUTEX

was incorrect. The correct test needed to have && instead of || as follows:

if (OSTCBCur->OSTCBPrio != pip &&
 OSTCBCur->OSTCBPrio != prio) {

 OS_EXIT_CRITICAL();

 return (OS_ERR_NOT_MUTEX_OWNER);

 }

V2.04-003:
The function OSMutexDel() needed to release the priority of the PIP. The

following line was added in OSMutexDel():

OSTCBPrioTbl[pip] = (OS_TCB *)0;

V2.04-004:
The function prototype for OSMutexDel() needed to be added in

uCOS_II.H.

 66 of 90

OS_CFG.H:

Added a number of #define in OS_CFG.H to allow you to reduce the amount

of code and data space. The reason this is done using #defines instead of

simply using a librarian is to prevent having to support a large number of

librarians and also to ensure that data space is also reduced when un-needed

features (i.e. functions) also require data storage.

OS_MAX_FLAGS is used to determine how many event flags your application

will support.

OS_FLAG_EN to Enable (1) or Disable (0) code generation for ALL event flag

services and data storage. Also, OS_FLAG_WAIT_CLR_EN allows you to

Enable (1) or Disable (0) code generation for code to wait for „cleared‟ event

flags.

The following table summarizes all the other #define constants ADDED in

V2.51. The #defines are set to 1 by default, enabling the code.

#define name in OS_CFG.H ... to enable the function:

OS_FLAG_ACCEPT_EN OSFlagAccept()

OS_FLAG_DEL_EN OSFlagDel()

OS_FLAG_QUERY_EN OSFlagQuery()

OS_MBOX_ACCEPT_EN OSMboxAccept()

OS_MBOX_POST_EN OSMboxPost()

OS_MBOX_POST_OPT_EN OSMboxPostOpt()

OS_MBOX_QUERY_EN OSMBoxQuery()

OS_MEM_QUERY_EN OSMemQuery()

OS_MUTEX_ACCEPT_EN OSMutexAccept()

OS_MUTEX_QUERY_EN OSMutexQuery()

OS_Q_ACCEPT_EN OSQAccept()

OS_Q_POST_EN OSQPost()

OS_Q_POST_FRONT_EN OSQPostFront()

OS_Q_POST_OPT_EN OSQPostOpt()

OS_Q_QUERY_EN OSQQuery()

OS_SEM_ACCEPT_EN OSSemAccept()

OS_SEM_QUERY_EN OSSemQuery()

OS_TASK_QUERY_EN OSTaskQuery()

OS_TIME_DLY_HMSM_EN OSTimeDlyHMSM()

OS_TIME_DLY_RESUME_EN OSTimeDlyResume()

OS_TIME_GET_SET_EN OSTimeGet() and OSTimeSet()

OS_SCHED_LOCK_EN OSSchedLock()and OSSchedUnlock()

Added the typedef OS_FLAGS to allow you to specify the width of flags in an

event flag group.

 67 of 90

IMPORTANT

You WILL need to add ALL of the above #define in your OS_CFG.H

files because uCOS_II.H contains error checks that will make your compiler

complain if you don‟t include these #defines. The easiest way to

accomplish this is to simply copy one of the OS_CFG.H files supplied in this

release and paste it into your application and enable/disable the features you

need.

OS_CORE.C:

Added call to OS_FlagInit() in OSInit() to support event flags.

Added call to OSTaskIdleHook() in OS_TaskIdle() to allow you to do

such things as STOP the CPU to conserve power when running the idle task. You

will need to add code in OSTaskIdleHook() to execute whatever is necessary

for your CPU to enter it‟s power down mode.

Added conditional compilation so that when OS_SCHED_LOCK_EN is set to 1 in

OS_CFG.H, the code for OSSchedLock() and OSSchedUnlock() will be

produced.

Corrected a bug in OS_TCBInit(). OSTaskCreateHook() was being

OSTCBPrioTbl[prio] passed INSTEAD of ptcb.

OSTCBPrioTbl[prio] didn‟t contain a valid pointer when

OSTaskCreateHook() was being called.

WARNING
If you use the NEW port files in your product you will need to change ALL

your Interrupt Service Routines (ISRs) to handle the new way the port works.

See New Algorithm For Ports at the end of the V2.51 notes.

 68 of 90

OS_FLAG.C:

 Added event flags to µC/OS-II, see AN-1007.

OS_MBOX.C:

Added conditional compilation so that when OS_MBOX_ACCEPT_EN is set to 1

in OS_CFG.H, the code for OSMboxAccept() will be produced.

Added conditional compilation so that when OS_MBOX_POST_EN is set to 1 in

OS_CFG.H, the code for OSMboxPost() will be produced. This allows you to

reduce the amount of code space. The reason this conditional compilation has

been added is because I added the more powerful function OSMboxPostOpt()

which can emulate OSMboxPost() and also allows you to broadcast messages

to all tasks waiting on the mailbox.

Added OSMboxPostOpt() which can emulate OSMboxPost() and also

allows you to broadcast messages to all tasks waiting on the mailbox. The

#define constant OS_MBOX_POST_OPT_EN found in OS_CFG.H allows you

to enable (when 1) or disable (when 0) this feature.

Added conditional compilation so that when OS_MBOX_QUERY_EN is set to 1 in

OS_CFG.H, the code for OSMboxQuery() will be produced. This allows you

to reduce the amount of code space.

OS_MEM.C:

Added code to test the argument addr to make sure it‟s not a NULL pointer in

OSMemCreate().

Added code to test the argument pmem to make sure it‟s not a NULL pointer in

OSMemGet().

Added code to test the argument pmem and pblk to make sure they are not NULL

pointers in OSMemGet().

Added conditional compilation so that when OS_MEM_QUERY_EN is set to 1 in

OS_CFG.H, the code for OSMemQuery() will be produced. This allows you to

reduce the amount of code space.

Added code to test the argument pmem and pdata to make sure they are not

NULL pointers in OSMemQuery().

 69 of 90

Added conditional compilation to allow you to declare storage for a single

memory partition. In other words, you are now allowed to set

OS_MAX_MEM_PART to 1 in OS_CFG.H.

OS_MUTEX.C:

Added conditional compilation so that when OS_MUTEX_ACCEPT_EN is set to 1

in OS_CFG.H, the code for OSMutexAccept() will be produced. This allows

you to reduce the amount of code space.

Added conditional compilation so that when OS_MUTEX_QUERY_EN is set to 1

in OS_CFG.H, the code for OSMutexQuery() will be produced. This allows

you to reduce the amount of code space.

Fixed a bug in OSMutexDel(). The entry in OSTCBPrioTbl[] was not

being freed at the priority inheritance priority. This has been corrected.

Fixed a bug in OSMutexPost(). The current task priority was being tested for

&& instead of ||. This has been corrected.

OS_Q.C:

Added conditional compilation so that when OS_Q_ACCEPT_EN is set to 1 in

OS_CFG.H, the code for OSQAccept() will be produced. This allows you to

reduce the amount of code space.

Added conditional compilation so that when OS_Q_FLUSH_EN is set to 1 in

OS_CFG.H, the code for OSFlushAccept() will be produced. This allows

you to reduce the amount of code space.

Added conditional compilation so that when OS_Q_POST_EN is set to 1 in

OS_CFG.H, the code for OSQPost() will be produced. This allows you to

reduce the amount of code space. The reason this conditional compilation has

been added is because I added the more powerful function OSQPostOpt()

which can emulate both OSQPost() and OSQPostFront() also allows you

to broadcast messages to all tasks waiting on the queue.

Added conditional compilation so that when OS_Q_POST_FRONT_EN is set to 1

in OS_CFG.H, the code for OSQPostFront() will be produced. This allows

you to reduce the amount of code space. The reason this conditional compilation

has been added is because I added the more powerful function OSQPostOpt().

Added OSQPostOpt() which can emulate both OSQPost() and

OSQPostFront() and also allows you to broadcast messages to all tasks

 70 of 90

waiting on the queue. The #define constant OS_Q_POST_OPT_EN found in

OS_CFG.H allows you to enable (when 1) or disable (when 0) this feature.

Added conditional compilation so that when OS_Q_QUERY_EN is set to 1 in

OS_CFG.H, the code for OSQQuery() will be produced. This allows you to

reduce the amount of code space.

Added conditional compilation to allow you to declare storage for a single

message queue. In other words, you are now allowed to set OS_MAX_QS to 1 in

OS_CFG.H.

OS_SEM.C:

Added conditional compilation so that when OS_SEM_ACCEPT_EN is set to 1 in

OS_CFG.H, the code for OSSemAccept() will be produced.

Added conditional compilation so that when OS_SEM_QUERY_EN is set to 1 in

OS_CFG.H, the code for OSSemQuery() will be produced. This allows you to

reduce the amount of code space.

OS_TASK.C:

Added call to OS_FlagUnlink() in OSTaskDel() to support event flags.

Note that this code is conditionally compiled in when OS_FLAG_EN is set to 1.

Added conditional compilation so that when OS_TASK_QUERY_EN is set to 1 in

OS_CFG.H, the code for OSTaskQuery() will be produced. This allows you

to reduce the amount of code space.

OS_TIME.C:

Added conditional compilation so that when OS_TIME_DLY_HMSM_EN is set to

1 in OS_CFG.H, the code for OSTimeDlyHMSM() will be produced. This

allows you to reduce the amount of code space in case you chose not to use this

function.

Added conditional compilation so that when OS_TIME_DLY_RESUME_EN is set

to 1 in OS_CFG.H, the code for OSTimeDlyResume() will be produced. This

allows you to reduce the amount of code space in case you chose not to use this

function.

Added conditional compilation so that when OS_TIME_GET_SET_EN is set to 1

in OS_CFG.H, the code for OSTimeGet() and OSTimeSet() will be

produced. This allows you to reduce the amount of code space in case you chose

not to use this function.

 71 of 90

uCOS_II.C:

Added OS_FLAG.C.

uCOS_II.H:

Changed OS_VERSION to 205.

Added constants, data types and function prototypes to support Event Flags.

Added OS_POST_OPT_??? which are the options to specify in

OSMboxPostOpt() and OSQPostOpt() calls.

The global variable OSTime is not allocated when OS_TIME_GET_SET_EN is

set to 0. This reduces the RAM footprint by 4 bytes.

Added checks at the end of uCOS_II.H to ensure that you don‟t forget any

#defines that are assumed to be declared in OS_CFG.H. If you do forget any

of the required #defines in OS_CFG.H, the compiler will issue an error

message. In other words, your compiler should complain about the fact that you

didn‟t specify all the necessary #defines.

 72 of 90

New Algorithm For Ports:

V2.51 comes with a new algorithm which prevents from having to adjust the stack

pointer in OSIntCtxSw() and thus making the port independent of compilers

and compiler options.

You should still be able to use your OLD (V2.04 and earlier) ports without

change (except you‟ll need to add a few HOOK functions as described in the next

section.

This new algorithm affects ALL your ISRs and thus you MUST play close

attention to the following changes.

The OLD pseudo code for OSIntCtxSw() was:

OSIntCtxSw(): /* OLD */

 Adjust the SP to remove call to OSIntExit(),

 locals in OSIntExit() and the call to OSIntCtxSw();

 Save the stack pointer to OSTCBCur->OSTCBStkPtr;

 Call OSTaskSwHook()

 OSTCBCur = OSTCBHighRdy;

 OSPrioCur = OSPrioHighRdy;

 CPU Stack Pointer = OSTCBHighRdy->OSTCBStkPtr;

 POP all the CPU registers from the new task‟s stack;

 Execute a return from interrupt instruction;

The NEW pseudo code for OSIntCtxSw() is now:

OSIntCtxSw(): /* NEW */

 Call OSTaskSwHook()

 OSTCBCur = OSTCBHighRdy;

 OSPrioCur = OSPrioHighRdy;

 CPU Stack Pointer = OSTCBHighRdy->OSTCBStkPtr;

 POP all the CPU registers from the new task‟s stack;

 Execute a return from interrupt instruction;

You should notice that you NO LONGER need to adjust the SP. The reason this

is possible is because, the SP of the task that can be switched out now NEEDS to

be saved in ALL the ISRs as described below.

 73 of 90

You MUST now change ALL your ISRs. The OLD pseudo code for your ISRs

was:

YourISR(): /* OLD */

 Save processor registers onto current task‟s stack;

 Call OSIntEnter() or increment OSIntNesting;

 .

 YOUR ISR Handler code;

 .

 Call OSIntExit();

 Restore processor registers from current task‟s stack;

 Execute a return from interrupt instruction;

The NEW pseudo code for OSIntCtxSw() is now:

YourISR(): /* NEW */

 Save processor registers onto current task‟s stack;

 Call OSIntEnter() or increment OSIntNesting;

 if (OSIntNesting == 1) {

 Save the CPU’s Stack Pointer onto current task’s stack;

 }

 .

 YOUR ISR Handler code;

 .

 Call OSIntExit();

 Restore processor registers from current task‟s stack;

 Execute a return from interrupt instruction;

 74 of 90

Upgrading from V2.04 (or earlier) to V2.51:

You should be able to use processor ports made for V2.04 or earlier. Because I

added new features, you will most likely need to change the following files:

1) OS_CFG.H:

You will need to ADD all the new #define constants and also, declare the

data type OS_FLAGS. As I mentioned previously, you can simply copy one

of the OS_CFG.H files supplied with this release and paste it into your own

and make the appropriate selection of features you need in your product.

2) OS_CPU_C.C:

You will need to ADD an empty function for OSTaskIdleHook() as

follows unless you actually want to add your own code to the function:

void OSTaskIdleHook (void)

{

}

3) OS_CPU_A.ASM:

If you want to use the new ALGORITHM described in the previous section,

you will need to change OSIntCtxSw(), OSTickISR() AND all your

ISRs. You should be able to use your OLD ports without change if you don‟t

want to use the new algorithm.

4) OS_CPU.H:

No change.

5) Your ISRs:

If you want to use the new ALGORITHM described in the previous section,

you will need to change ALL your ISRs. You should be able to use your

OLD ports without change if you don‟t want to use the new algorithm.

 75 of 90

V2.04
(2000/10/31)

MISCELLANEOUS:

Removed revision history from all the source code. The revision history is now

described in this document. This was done to reduce the amount of „clutter‟ from

the source files.

Added OS_ARG_CHK_EN to enable (when 1) MicroC/OS-II argument checking.

By setting this configuration constant to 0, you would be able to reduce code size

and improve on performance by not checking the range of the arguments passed

to MicroC/OS-II functions. However, it is recommended to leave argument

checking enabled.

Added Mutual Exclusion Semaphores (OS_MUTEX.C) that are described in

AN1002.PDF.

Added support for OS_CRITICAL_METHOD #3 that allows the status register of

the CPU to be saved in a local variable. The status register is assumed to be saved

by OS_ENTER_CRITICAL() in a local variable called cpu_sr of type

OS_CPU_SR. The data type OS_CPU_SR is assumed to be declared in

OS_CPU.H. The status register (and thus the state of the interrupt disable flag) is

assumed to be restored by OS_EXIT_CRITICAL() from the contents of this

variable. The macros would be declared as follows:

 #define OS_ENTER_CRITICAL() (cpu_sr = OSCPUSaveSR())

 #define OS_EXIT_CRITICAL() (OSCPURestoreSR(cpu_sr))

Note that the functions OSCPUSaveSR() and OSCPURestoreSR()

would be written in assembly language and would typically be found in

OS_CPU_A.ASM (or equivalent).

The check for OSIntNesting in all µC/OS-II services is now being done

without disabling interrupts in order to reduce interrupt latency. In other words,

the following code:

 OS_ENTER_CRITICAL();

 if (OSIntNesting > 0) {

 .

 .

 OS_EXIT_CRITICAL();

 }

Has been replaced by:

 76 of 90

 if (OSIntNesting > 0) {

 .

 .

 }

The reason is that ALL currently known processors will treat this byte size

variable (OSIntNesting) indivisibly.

OS_CORE.C:

Moved all local variables to uCOS_II.H making them all global variables. This

helps when testing.

Calls to OSTaskCreate() and OSTaskCreateExt() in OSInit() now

return (void) to indicate that the return value is not being used. This prevents

warnings from LINT.

Although not critical, OSInit() was optimized for speed.

Added OSInitHookBegin() at the beginning of OSInit() to allow for a

processor port to provide additional „OS” specific initialization which would be

done BEFORE MicroC/OS-II is initialized.

Added OSInitHookEnd() at the end of OSInit() to allow for a processor

port to provide additional „OS” specific initialization which would be done

AFTER MicroC/OS-II is initialized.

Initialized .OSEventType to OS_EVENT_TYPE_UNUSED in OSInit().

Added boundary check for OSIntNesting in OSIntEnter() to prevent

wrapping back to 0 if OSIntNesting is already at 255.

Added boundary check on OSIntNesting in OSIntExit() to prevent

wrapping back to 255 if OSIntNesting is already at 0.

Changed the test for rescheduling in OSIntExit() and OSSched() from:

if ((--OSIntNesting | OSLockNesting) == 0) {

to

if ((OSIntNesting == 0) && (OSLockNesting == 0)) {

for sake of clarity.

 77 of 90

Removed unreachable code in OSTaskStat() for CPU usage > 100%.

Added call to OSTCBInitHook() in OSTCBInit() to allow user (or port)

specific TCB extension initialization.

Moved the increment of OSTimeTick() immediately after calling

OSTimeTickHook().

Made OSTime volatile.

OS_MBOX.C:

Removed checking of pevent from the critical section to reduce interrupt

latency.

Removed checking of msg from the critical section to reduce interrupt latency.

Added OSMBoxDel() to delete a message mailbox and free up its Event Control

Block. All tasks pending on the mailbox will be readied. This feature is enabled

by setting OS_MBOX_DEL_EN to 1.

Changed test:
if (pevent->OSEventGrp)

to

if (pevent->OSEventGrp != 0x00).

OS_MEM.C:

Moved the local variables OSMemFreeList and OSMemTbl[] to

uCOS_II.H.

Added code to initialize all the fields of the last node in OSMemInit().

OS_MUTEX.C:

Added services to support Mutual Exclusion Semaphores that are used to reduce

priority inversions.

OS_Q.C:

Removed checking of pevent from the critical section to reduce interrupt

latency.

 78 of 90

Removed checking of msg from the critical section to reduce interrupt latency.

Added OSQDel() to delete a message queue and free up its Event Control

Block. All tasks pending on the queue will be readied. This feature is enabled by

setting OS_Q_DEL_EN to 1.

Changed test:
if (pevent->OSEventGrp)

to

if (pevent->OSEventGrp != 0x00).

Moved the definition of the data type OS_Q to uCOS_II.H.

OS_SEM.C:

Removed checking of pevent from the critical section to reduce interrupt

latency.

Added OSSemDel() to delete a semaphore and free up its Event Control Block.

All tasks pending on the semaphore will be readied. This feature is enabled by

setting OS_SEM_DEL_EN to 1.

Changed test:
if (pevent->OSEventGrp)

to

if (pevent->OSEventGrp != 0x00).

OS_TASK.C:

Task stack is now cleared in OSTaskCreateExt() when either options

OS_TASK_OPT_STK_CHK or OS_TASK_OPT_STK_CLR is set. The new code

is:

if (((opt & OS_TASK_OPT_STK_CHK) != 0x0000) ||

 ((opt & OS_TASK_OPT_STK_CLR) != 0x0000)) {

OSTaskCreateHook() has been removed from OSTaskCreate() and

OSTaskCreateExt() and moved to OSTCBInit() so that the hook is called

BEFORE the task is made ready-to-run. This avoids having the possibility of

readying the task before calling the hook function.

If you don‟t specify any Mailboxes (OS_MBOX == 0), Queues (OS_Q == 0),

Semaphores (OS_SEM == 0) or Mutexes (OS_MUTEX == 0) in OS_CFG.H

in order to create a minimal system, OSTaskChangePrio() and

OSTaskDel() will no longer reference OSTCBEventPtr.

 79 of 90

OS_TIME.C:

Added cast to INT16U for all references of tick in OSTimeDlyHMSM().

uCOS_II.C:

Added OS_MUTEX.C.

uCOS_II.H:

Changed OS_VERSION to 204.

Moved all „local‟ variables from OS_MEM.C, OS_Q.C and OS_TASKS.C to

simplify debugging and unit testing.

Added constants, data types and function prototypes to support Mutual Exclusion

Semaphores.

 80 of 90

This page is intentionally blank.

 81 of 90

V2.03
(1999/09/09)

MISCELLANEOUS:

The distribution of µC/OS-II now assumes the Borland C/C++ V4.51 or higher

compiler instead of the V3.1 compiler. The code should, however, compile and

run using V3.1.

This release contains a slightly different directory structure. The name of the

compiler is added to the directory structure in order to support multiple compilers

and have the same directory structure for all of these.

\SOFTWARE\uCOS-II\SOURCE

 Contains the source files for the processor independent code of uC/OS-II.

\SOFTWARE\uCOS-II\Ix86L\BC45

Contains the source files for the 80x86 real mode, large model port. The

port now contains the function OSTaskStkInit_FPE_x86() which

needs to be called before you create a task that will use Borland C/C++'s

floating-point emulation (FPE) library. See application note AN-1001

found on www.Micrium.com.

\SOFTWARE\uCOS-II\Ix86L-FP\BC45

Contains the source files for the 80x86 real mode, large model port. This

port also contains hardware floating-point support. In other words,

µC/OS-II performs a context switch on the floating-point registers as well

as the integer registers. This port was not present on the original

distribution of µC/OS-II (i.e. V2.00).

\SOFTWARE\uCOS-II\EX1_x86L\BC45\SOURCE

Contains the source code for the sample code of Example #1

\SOFTWARE\uCOS-II\EX1_x86L\BC45\TEST

Contains the build files (MAKETEST.BAT and TEST.MAK) as well as

the executable for Example #1. To build the executable for example #1,

simply type MAKETEST at the DOS prompt. You may have to change

TEST.MAK to tell it where the Borland C/C++ V4.51 compiler is located.

My compiler was located in the E:\BC45 directory. To execute example

#1, type TEST at the DOS prompt.

\SOFTWARE\uCOS-II\EX2_x86L\BC45\SOURCE

Contains the source code for the sample code of Example #2

\SOFTWARE\uCOS-II\EX2_x86L\BC45\TEST

 82 of 90

Contains the build files (MAKETEST.BAT and TEST.MAK) as well as

the executable for Example #2. To build the executable for example

#2, simply type MAKETEST at the DOS prompt. You may have to

change TEST.MAK to tell it where the Borland C/C++ V4.51 compiler is

located. My compiler was located in the E:\BC45 directory. To execute

example #2, type TEST at the DOS prompt.

\SOFTWARE\uCOS-II\EX3_x86L\BC45\SOURCE

Contains the source code for the sample code of Example #3

\SOFTWARE\uCOS-II\EX3_x86L\BC45\TEST

Contains the build files (MAKETEST.BAT and TEST.MAK) as well as

the executable for Example #3. To build the executable for example #3,

simply type MAKETEST at the DOS prompt. You may have to change

TEST.MAK to tell it where the Borland C/C++ V4.51 compiler is located.

My compiler was located in the E:\BC45 directory.

To execute example #3, type TEST at the DOS prompt.

\SOFTWARE\uCOS-II\EX4_x86L.FP\BC45\SOURCE

Contains the source code for the sample code of Example #4

\SOFTWARE\uCOS-II\EX4_x86L\BC45\TEST

Contains the build files (MAKETEST.BAT and TEST.MAK) as well as

the executable for Example #4. Example #4 demonstrate the use of

Ix86L-FP, the port that saves/restores the 80x86's floating-point

registers during a context switch. This of course applies for 80x86

processors having a floating-point unit. You may have to change

TEST.MAK to tell it where the Borland C/C++ V4.51 compiler is located.

My compiler was located in the E:\BC45 directory. To execute example

#1, type TEST at the DOS prompt.

\SOFTWARE\BLOCKS\PC\BC45

Contains the source files for the PC services used to display characters on

the screen, read the keyboard etc.

 83 of 90

EXAMPLES:

Example #1 (V2.00)

TEST.C was previously called EX1L.C

PC_DispClrLine() has been changed to PC_DispClrRow().

TaskClk() now calls PC_GetDateTime().

The floating-point code in TaskStart() has been removed so that the

task only executes integer arithmetic instructions.

Example #2 (V2.00)

TEST.C was previously called EX2L.C

Added TaskStartCreateTasks() to create all the application tasks.

TaskStart() now uses the Borland C/C++ Floating-Point Emulation

library and thus, the stack needs to be 'preconditioned' by calling the

function OSTaskStkInit_FPE_x86() (see www.Micrium.com,

AN-1001).

PC_DispClrLine() has been changed to PC_DispClrRow().

TaskClk() now calls PC_GetDateTime().

Example #3 (V2.00)

TEST.C was previously called EX3L.C

Added TaskStartCreateTasks() to create all the application tasks.

PC_DispClrLine() has been changed to PC_DispClrRow().

TaskClk() now calls PC_GetDateTime().

Floating-point operations have been replaced with integer operations.

Example #4 (V2.00)

Example #4 is a new example using hardware assisted floating-point.

TEST.C was previously called EX4L.C

PC_DispClrLine() has been changed to PC_DispClrRow().

TaskClk() now calls PC_GetDateTime().

 84 of 90

PC Services (V2.00)
PC.C:

Functions are now listed in alphabetical order in the file.

PC_ElapsedStart() and PC_ElapsedStop() now protect the

critical section of code that accesses the timer ports.

PC_VectGet() and PC_VectSet() no longer depend on the Borland

C/C++ functions getvect() and setvect(). This should make these

functions more portable.

Changed the name of PC_DispClrLine() to PC_DispClrRow().

Added function PC_DispClrCol().

The following function now cast MK_FP() to (INT8U far *):

 PC_DispChar()

PC_DispClrLine()

PC_DispClrScr()

PC_DispStr()

PC_ElapsedStop(), cast inp() to INT8U.

PC_GetKey(), cast getch() to INT16S.

PC.H:

Function prototypes are now listed in alphabetical order.

Added prototype for PC_DispClrCol().

 85 of 90

OS_CORE.C:

Changed the return type of OSEventTaskRdy() from void to INT8U to

return the priority of the task readied even though the current version of

MicroC/OS-II doesn't make use of this feature. This change was done to support

future versions.

Moved OSDummy() from OS_TASK.C to OS_CORE.C to be able to call

OSDummy() from other services.

OS_MBOX.C:

Added check in OSMboxPost() to see if the caller is attempting to post a NULL

pointer. By definition, you should NOT send a NULL pointer message. If you

attempt to post a NULL pointer, OSMboxPost() will return

OS_ERR_POST_NULL_PTR.

Added checks to make sure pevent is not a NULL pointer. If pevent is a

NULL pointer, each of the following functions will return

OS_ERR_PEVENT_NULL:
 OSMboxPost()
 OSMboxQuery()

Note that OSMboxAccept() will return a NULL pointer because it doesn't

provide the capability of returning an error code.

OSMboxPend() sets *err to OS_ERR_PEVENT_NULL if pevent is a NULL

pointer.

OS_Q.C:

Added check in OSQPost() and OSQPostFront() to see if the caller is

attempting to post a NULL pointer. By definition, you should NOT send a NULL

pointer message. If you attempt to post a NULL pointer, OSQPost() and

OSQPostFront() will return OS_ERR_POST_NULL_PTR.

 86 of 90

Added checks to make sure pevent is not a NULL pointer. If pevent is a

NULL pointer, each of the following functions will return

OS_ERR_PEVENT_NULL:
 OSQFlush()
 OSQPost()

 OSQPostFront()
 OSQQuery()

Note that OSQAccept() simply returns a NULL pointer because it doesn't

provide the capability of returning an error code.

OSQPend() sets *err to OS_ERR_PEVENT_NULL if pevent is a NULL

pointer.

OS_SEM.C:

Added checks to make sure pevent is not a NULL pointer. If pevent is a

NULL pointer, each of the following functions will return

OS_ERR_PEVENT_NULL:
 OSSemPost()

 OSSemQuery()

Note that OSSemAccept() returns 0 because it doesn't provide the capability to

return an error code.

OSSemPend() sets *err to OS_ERR_PEVENT_NULL if pevent is a NULL

pointer.

OS_TASK.C:

Moved OSDummy() to OS_CORE.C

uCOS_II.H:

Added error code OS_ERR_POST_NULL_PTR (value is 3).

Changed the return type of OSEventTaskRdy() from void to INT8U to

return the priority of the task readied.

Added function prototype for OSDummy().

Added error code OS_ERR_PEVENT_NULL (value is 4)

 87 of 90

V2.02
(1999/07/18)

OS_MBOX.C:

Removed last else statement in OSMboxPend() because the code is

unreachable.

OS_Q.C:

Removed last else statement in OSQPend() because the code is unreachable.

OS_TASK.C:

OSTaskCtr is always included.

uCOS_II.C:

Added check for definition of macro OS_ISR_PROTO_EXT so that the prototype

of OSCtxSw() and OSTickISR() can be changed based on compiler specific

requirements. To use a different prototype, simply add:
#define OS_ISR_PROTO_EXT

in OS_CPU.H of the port and then define the new prototype format for

OSCtxSw() and OSTickISR() in OS_CPU.H of the port.

OSTaskCtr is always included. Previously it was conditionally compiled only

if OS_TASK_CREATE_EN, OS_TASK_CREATE_EXT_EN or

OS_TASK_DEL_EN was set to 1. It turns out that you MUST always have either

OS_TASK_CREATE_EN or OS_TASK_CREATE_EXT_EN set to 1 anyway!

 88 of 90

This page is intentionally blank.

 89 of 90

V2.01
(1999/07/15)

OS_CORE.C:

Changed for loop inside OSEventWaitListInit() to inline code for

speed. This eliminates the loop overhead.

The argument stk_size in OSTCBInit() has been changed from INT16U to

INT32U to accommodate large stacks.

OS_MBOX.C:

Changed 'for' loop inside 'OSMboxQuery()' to inline code for speed. This

eliminates the loop overhead.

OS_Q.C:

Added typecast to avoid compiler error/warning:
 pq = (OS_Q *)pevent->OSEventPtr;
 ^^^^^^^^

Affected functions:
 OSQAccept()
 OSQFlush()

 OSQPend()

 OSQPost()

 OSQPostFront()

Changed for loop inside OSQQuery() to inline code for speed. This

eliminates the loop overhead.

Added msg = (void *)0; in if (OSIntNesting > 0) case.

OS_SEM.C:

Second if statement in function OSSemPend() needed to be and if/else

clause.

 90 of 90

OS_TASK.C:

Stack filling is now done using the ANSI C function memset() for speed.

Copying of the OS_TCB structure in OSTaskQuery() is now done using

memcpy() for speed.

Function OSTaskStkChk() now cast the value 0 to (OS_STK)0 in while

loops.

uCOS_II.C:

Changed the comment for OSTCBStkSize in the OS_TCB structure to indicate

that the size is in number of elements and not bytes.

The argument stk_size in OSTCBInit() has been changed from INT16U to

INT32U to accommodate large stacks.

