
 557

µC/OS-II V2.90

Configuration Manual
This chapter provides a description of the configurable elements of µC/OS-II. Because µC/OS-II is provided in

source form, configuration is done through a number of #define constants, which are found in OS_CFG.H and

should exist for each project/product that you develop. In other words, configuration is done via conditional

compilation.

Instead of creating an OS_CFG.H file from scratch, it is recommended that you copy and modify one of the

OS_CFG.H files provided in one of the examples that came with µC/OS-II. OS_CFG.H is independent of the

type of CPU used.

This section describes each of the #define constants in OS_CFG.H.

 558

Miscellaneous

OS_APP_HOOKS_EN
When set to 1, this #define specifies that application defined hooks are called from µC/OS-II’s hooks. See

also OS_CPU_HOOKS_EN. Specifically:

The µC/OS-II hook … Calls the Application-define hook …

OSTaskCreateHook() App_TaskCreateHook()

OSTaskDelHook() App_TaskDelHook()

OSTaskIdleHook() App_TaskIdleHook()

OSTaskStatHook() App_TaskStatHook()

OSTaskSwHook() App_TaskSwHook()

OSTCBInitHook() App_TCBInitHook()

OSTimeTickHook() App_TimeTickHook()

OS_ARG_CHK_EN
OS_ARG_CHK_EN indicates whether you want most of µC/OS-II functions to perform argument checking. When

set to 1, µC/OS-II will ensure that pointers passed to functions are non-NULL, that arguments passed are within

allowable range and more. OS_ARG_CHK_EN was added to reduce the amount of code space and processing time

required by µC/OS-II. Set OS_ARG_CHK_EN to 0 if you must reduce code space to a minimum. In general, you

should always enable argument checking and thus set OS_ARG_CHK_EN to 1.

OS_CPU_HOOKS_EN
OS_CPU_HOOKS_EN indicates whether OS_CPU_C.C declares the hook function (when set to 1) or not (when set

to 0). Recall that µC/OS-II expects the presence of nine functions that can be defined either in the port (i.e., in

OS_CPU_C.C) or by the application code. These functions are:

OSInitHookBegin()

OSInitHookEnd()

OSTaskCreateHook()

OSTaskDelHook()

OSTaskIdleHook()

OSTaskStatHook()

OSTaskSwHook()

OSTCBInitHook()

OSTimeTickHook()

OS_DEBUG_EN
When set to 1, this #define adds ROM constants located in OS_DEBUG.C to help support kernel aware

debuggers. Specifically, a number of named ROM variables can be queried by a debugger to find out about

compiled-in options. For example, the debugger can find out the size of an OS_TCB, µC/OS-II’s version

number, the size of an event flag group (OS_FLAG_GRP) and much more.

 559

OS_EVENT_MULTI_EN
This constant determines whether the code to support pending on multiple events will be enabled (1) or not (0).

This constant thus enables code for the function OSEventPendMulti(). This #define was added in V2.86.

OS_EVENT_NAME_EN
This constant determines whether names can be assigned to either a semaphore, a mutex, a mailbox or a

message queue. If OS_EVENT_NAME_EN is set to 0, this feature is disabled. You should note that need to use

OSEventNameSet() to set the name of either a semaphores, a mutex, a mailbox or a message queue. You

need to use OSEventNameGet() to obtain the name of either a semaphores, a mutex, a mailbox or a message

queue.

OS_LOWEST_PRIO
OS_LOWEST_PRIO specifies the lowest task priority (i.e., highest number) that you intend to use in your

application and is provided to reduce the amount of RAM needed by µC/OS-II. As of V2.80 µC/OS-II priorities

can go from 0 (highest priority) to a maximum of 254 (lowest possible priority). Setting OS_LOWEST_PRIO to a

value less than 254 means that your application cannot create tasks with a priority number higher than

OS_LOWEST_PRIO. In fact, µC/OS-II reserves priorities OS_LOWEST_PRIO and OS_LOWEST_PRIO–1 for itself;

OS_LOWEST_PRIO is reserved for the idle task, OS_TaskIdle(), and OS_LOWEST_PRIO–1 is reserved for the

statistic task, OS_TaskStat(). The priorities of your application tasks can thus take a value between 0 and

OS_LOWEST_PRIO–2 (inclusive). The lowest task priority specified by OS_LOWEST_PRIO is independent of

OS_MAX_TASKS. For example, you can set OS_MAX_TASKS to 10 and OS_LOWEST_PRIO to 32 and have up to

10 application tasks, each of which can have a task priority value between 0 and 30 (inclusive). Note that each

task must still have a different priority value. You must always set OS_LOWEST_PRIO to a value greater than the

number of application tasks in your system. For example, if you set OS_MAX_TASKS to 20 and

OS_LOWEST_PRIO to 10, you can not create more than eight application tasks (0 to 7) since priority 8 is the

statistics task and priority 9 is the idle task. You are simply wasting RAM.

OS_MAX_EVENTS
OS_MAX_EVENTS specifies the maximum number of event control blocks that can be allocated. An event control

block is needed for every message mailbox, message queue, mutual exclusion semaphore, or semaphore object.

For example, if you have 10 mailboxes, five queues, four mutexes, and three semaphores, you must set

OS_MAX_EVENTS to at least 22. OS_MAX_EVENTS must be greater than 0. See also OS_MBOX_EN, OS_Q_EN,

OS_MUTEX_EN, and OS_SEM_EN.

OS_MAX_FLAGS
OS_MAX_FLAGS specifies the maximum number of event flags that you need in your application.

OS_MAX_FLAGS must be greater than 0. To use event-flag services, you also need to set OS_FLAG_EN to 1.

 560

OS_MAX_MEM_PART
OS_MAX_MEM_PART specifies the maximum number of memory partitions that your application can create. To

use memory partitions, also need to set OS_MEM_EN to 1. If you intend to use memory partitions,

OS_MAX_MEM_PART must be set to at least the number of partitions you wish to create. For example, by setting

OS_MAX_MEM_PART to 3, your are allowed to create and use up to three memory partitions. Setting

OS_MAX_MEM_PART to a number greater than the number of memory partitions your application uses will not

cause problems but is unnecessary and a waste of RAM.

OS_MAX_QS
OS_MAX_QS specifies the maximum number of message queues that your application can create. To use

message queues, you also must set OS_Q_EN to 1. If you intend to use message queues, OS_MAX_QS must be set

to at least the number of queues you wish to create. For example, if you set OS_MAX_QS to 3, you are allowed

to create and use up to three message queues. Setting OS_MAX_QS to greater than the number of message

queues your application uses will not cause problems but is unnecessary and a waste of RAM.

OS_MAX_TASKS
OS_MAX_TASKS specifies the maximum number of application tasks that can exist in your application. Note that

OS_MAX_TASKS cannot be greater than 253 (as of V2.80) because µC/OS-II currently reserves two tasks for

itself (see OS_N_SYS_TASKS in uCOS_II.H). If you set OS_MAX_TASKS to the exact number of tasks in your

system, you need to make sure that you revise this value when you add additional tasks. Conversely, if you

make OS_MAX_TASKS much higher than your current task requirements (for future expansion), you are wasting

valuable RAM.

OS_SCHED_LOCK_EN
This constant enables (when set to 1) or disables (when set to 0) code generation for the two functions

OSSchedLock() and OSSchedUnlock().

OS_TICK_STEP_EN
µC/OS-View (a Micrium product that allows you to display run-time data about your tasks on a Windows-based

PC) can now ‘halt’ µC/OS-II’s tick processing and allow you to issue ‘step’ commands from µC/OS-View. In

other words, µC/OS-View can prevent µC/OS-II from calling OSTimeTick() so that timeouts and time delays

are no longer processed. However, though a keystroke from µC/OS-View, you can execute a single tick at a

time. If OS_TIME_TICK_HOOK_EN (see below) is set to 1, OSTimeTickHook() is still executed at the regular

tick rate in case you have time critical items to take care of in your application.

OS_TICKS_PER_SEC
OS_TICKS_PER_SEC specifies the rate at which you call OSTimeTick(). It is up to your initialization code to

ensure that OSTimeTick() is invoked at this rate. This constant is used by OSStatInit(), OS_TaskStat(),

and OSTimeDlyHMSM().

 561

Event Flags

OS_FLAG_EN
OS_FLAG_EN enables (when set to 1) or disables (when set to 0) code generation of all the event-flag services

and data structures, which reduces the amount of code and data space needed when your application does not

require the use of event flags. When OS_FLAG_EN is set to 0, you do not need to enable or disable any of the

other #define constants in this section.

OS_FLAG_ACCEPT_EN
OS_FLAG_ACCEPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the function

OSFlagAccept().

OS_FLAG_DEL_EN
OS_FLAG_DEL_EN enables (when set to 1) or disables (when set to 0) the code generation of the function

OSFlagDel().

OS_FLAG_NAME_EN
This constant determines whether names can be assigned to event flag groups. If OS_FLAG_NAME_EN is set to

0, this feature is disabled.

OS_FLAG_QUERY_EN
OS_FLAG_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the function

OSFlagQuery().

OS_FLAG_WAIT_CLR_EN
OS_FLAG_WAIT_CLR_EN enables (when set to 1) or disables (when set to 0) the code generation used to wait

for event flags to be 0 instead of 1. Generally, you want to wait for event flags to be set. However, you might

also want to wait for event flags to be clear, and thus you need to enable this option.

OS_FLAGS_NBITS
OS_FLAGS_NBITS has been introduced in V2.80 and specifies the number of bits used in event flags and MUST

be either 8, 16 or 32.

 562

Message Mailboxes

OS_MBOX_EN
This constant enables (when set to 1) or disables (when set to 0) the code generation of all message-mailbox

services and data structures, which reduces the amount of code space needed when your application does not

require the use of message mailboxes. When OS_MBOX_EN is set to 0, you do not need to enable or disable any

of the other #define constants in this section.

OS_MBOX_ACCEPT_EN
This constant enables (when set to 1) or disables (when set to 0) the code generation of the function

OSMboxAccept().

OS_MBOX_DEL_EN
This constant enables (when set to 1) or disables (when set to 0) the code generation of the function

OSMboxDel().

OS_MBOX_PEND_ABORT_EN
OS_MBOX_PEND_ABORT_EN enables (when set to 1) or disables (when set to 0) the code generation of the

function OSMboxPendAbort().

OS_MBOX_POST_EN
OS_MBOX_POST_EN enables (when set to 1) or disables (when set to 0) the code generation of the function

OSMboxPost(). You can disable code generation for this function if you decide to use the more powerful

function OSMboxPostOpt() instead.

OS_MBOX_POST_OPT_EN
OS_MBOX_POST_OPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the function

OSMboxPostOpt(). You can disable code generation for this function if you do not need the additional

functionality provided by OSMboxPostOpt(). OSMboxPost() generates less code.

OS_MBOX_QUERY_EN
OS_MBOX_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the function

OSMboxQuery().

 563

Memory Management

OS_MEM_EN
OS_MEM_EN enables (when set to 1) or disables (when set to 0) all code generation of the µC/OS-II partition-

memory manager and its associated data structures. This feature reduces the amount of code and data space

needed when your application does not require the use of memory partitions.

OS_MEM_NAME_EN
This constant determines whether names can be assigned to memory partitions. If OS_MEM_NAME_EN is set to

0, this feature is disabled and no RAM is used in the OS_MEM for the memory partition for storage of names.

OS_MEM_QUERY_EN
OS_MEM_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the function

OSMemQuery().

 564

Mutual Exclusion Semaphores

OS_MUTEX_EN
OS_MUTEX_EN enables (when set to 1) or disables (when set to 0) the code generation of all mutual-exclusion-

semaphore services and data structures, which reduces the amount of code and data space needed when your

application does not require the use of mutexes. When OS_MUTEX_EN is set to 0, you do not need to enable or

disable any of the other #define constants in this section.

OS_MUTEX_ACCEPT_EN
OS_MUTEX_ACCEPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the function

OSMutexAccept().

OS_MUTEX_DEL_EN
OS_MUTEX_DEL_EN enables (when set to 1) or disables (when set to 0) the code generation of the function

OSMutexDel().

OS_MUTEX_QUERY_EN
OS_MUTEX_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the function

OSMutexQuery().

 565

Message Queues

OS_Q_EN
OS_Q_EN enables (when set to 1) or disables (when set to 0) the code generation of all message-queue services

and data structures, which reduces the amount of code space needed when your application does not require the

use of message queues. When OS_Q_EN is set to 0, you do not need to enable or disable any of the other

#define constants in this section. Note that if OS_Q_EN is set to 0, the #define constant OS_MAX_QS is

irrelevant.

OS_Q_ACCEPT_EN
OS_Q_ACCEPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the function

OSQAccept().

OS_Q_DEL_EN
OS_Q_DEL_EN enables (when set to 1) or disables (when set to 0) the code generation of the function

OSQDel().

OS_Q_FLUSH_EN
OS_Q_FLUSH_EN enables (when set to 1) or disables (when set to 0) the code generation of the function

OSQFlush().

OS_Q_PEND_ABORT_EN
OS_Q_PEND_ABORT_EN enables (when set to 1) or disables (when set to 0) the code generation of the function

OSQPendAbort().

OS_Q_POST_EN
OS_Q_POST_EN enables (when set to 1) or disables (when set to 0) the code generation of the function

OSQPost(). You can disable code generation for this function if you decide to use the more powerful function

OSQPostOpt() instead.

OS_Q_POST_FRONT_EN
OS_Q_POST_FRONT_EN enables (when set to 1) or disables (when set to 0) the code generation of the function

OSQPostFront(). You can disable code generation for this function if you decide to use the more powerful

function OSQPostOpt() instead.

OS_Q_POST_OPT_EN
OS_Q_POST_OPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the function

OSQPostOpt(). You can disable code generation for this function if you do not need the additional

functionality provided by OSQPostOpt(). OSQPost() generates less code.

 566

OS_Q_QUERY_EN
OS_Q_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the function

OSQQuery().

 567

Semaphores

OS_SEM_EN
OS_SEM_EN enables (when set to 1) or disables (when set to 0) all code generation of the µC/OS-II semaphore

manager and its associated data structures, which reduces the amount of code and data space needed when your

application does not require the use of semaphores. When OS_SEM_EN is set to 0, you do not need to enable or

disable any of the other #define constants in this section.

OS_SEM_ACCEPT_EN
OS_SEM_ACCEPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the function

OSSemAccept().

OS_SEM_DEL_EN
OS_SEM_DEL_EN enables (when set to 1) or disables (when set to 0) the code generation of the function

OSSemDel().

OS_SEM_PEND_ABORT_EN
OS_SEM_PEND_ABORT_EN enables (when set to 1) or disables (when set to 0) the code generation of the

function OSSemPendAbort().

OS_SEM_QUERY_EN
OS_SEM_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the function

OSSemQuery().

OS_SEM_SET_EN
OS_SEM_SET_EN enables (when set to 1) or disables (when set to 0) the code generation of the function

OSSemSet().

 568

Task Management

OS_TASK_TMR_STK_SIZE
OS_TASK_TMR_STK_SIZE specifies the size of the µC/OS-II timer task stack. The size is specified not in bytes

but in number of elements. This is because a stack is declared to be of type OS_STK. The size of the timer-task

stack depends on the processor you are using, the ‘callback’ functions that will be executed when each of the

timer times out and the deepest anticipated interrupt-nesting level.

OS_TASK_STAT_STK_SIZE
OS_TASK_STAT_STK_SIZE specifies the size of the µC/OS-II statistic-task stack. The size is specified not in

bytes but in number of elements. This is because a stack is declared as being of type OS_STK. The size of the

statistic-task stack depends on the processor you are using and the maximum of the following actions:

• The stack growth associated with performing 32-bit arithmetic (subtraction and division)

• The stack growth associated with calling OSTimeDly()

• The stack growth associated with calling OSTaskStatHook()

• The deepest anticipated interrupt-nesting level

If you want to run stack checking on this task and determine its actual stack requirements, you must enable

code generation for OSTaskCreateExt() by setting OS_TASK_CREATE_EXT_EN to 1. Again, the priority of

OS_TaskStat() is always set to OS_LOWEST_PRIO-1.

OS_TASK_IDLE_STK_SIZE
OS_TASK_IDLE_STK_SIZE specifies the size of the µC/OS-II idle-task stack. The size is specified not in bytes

but in number of elements. This is because a stack is declared to be of type OS_STK. The size of the idle-task

stack depends on the processor you are using and the deepest anticipated interrupt-nesting level. Very little is

being done in the idle task, but you should allow at least enough space to store all processor registers on the

stack and enough storage to handle all nested interrupts.

OS_TASK_CHANGE_PRIO_EN
OS_TASK_CHANGE_PRIO_EN enables (when set to 1) or disables (when set to 0) the code generation of the

function OSTaskChangePrio(). If your application never changes task priorities after they are assigned, you

can reduce the amount of code space used by µC/OS-II by setting OS_TASK_CHANGE_PRIO_EN to 0.

OS_TASK_CREATE_EN
OS_TASK_CREATE_EN enables (when set to 1) or disables (when set to 0) the code generation of the

OSTaskCreate() function. Enabling this function makes µC/OS-II backward compatible with the µC/OS task-

creation function. If your application always uses OSTaskCreateExt() (recommended), you can reduce the

amount of code space used by µC/OS-II by setting OS_TASK_CREATE_EN to 0. Note that you must set at least

OS_TASK_CREATE_EN or OS_TASK_CREATE_EXT_EN to 1. If you wish, you can use both.

 569

OS_TASK_CREATE_EXT_EN
OS_TASK_CREATE_EN enables (when set to 1) or disables (when set to 0) the code generation of the function

OSTaskCreateExt(), which is the extended, more powerful version of the two task-creation functions. If your

application never uses OSTaskCreateExt(), you can reduce the amount of code space used by µC/OS-II by

setting OS_TASK_CREATE_EXT_EN to 0. Note that you need the extended task-create function to use the stack-

checking function OSTaskStkChk().

OS_TASK_DEL_EN
OS_TASK_DEL_EN enables (when set to 1) or disables (when set to 0) code generation of the function

OSTaskDel(), which deletes tasks. If your application never uses this function, you can reduce the amount of

code space used by µC/OS-II by setting OS_TASK_DEL_EN to 0.

OS_TASK_NAME_EN
This constant determines whether you can assign names to tasks. If OS_TASK_NAME_EN is set to 0, this feature

is disabled and no RAM is used in the OS_TCB for the task name.

OS_TASK_PROFILE_EN
This constant allows variables to be allocated in each task’s OS_TCB that hold performance data about each

task. Specifically, if OS_TASK_PROFILE_EN is set to 1, each task will have a variable to keep track of the

number of context switches, the task execution time, the number of bytes used by the task and more.

OS_TASK_STAT_EN
OS_TASK_STAT_EN specifies whether or not you can enable the µC/OS-II statistic task, as well as its

initialization function. When set to 1, the statistic task OS_TaskStat() and the statistic-task-initialization

function are enabled. OS_TaskStat() computes the CPU usage of your application. When enabled, it executes

every second and computes the 8-bit variable OSCPUUsage, which provides the percentage of CPU use of your

application. OS_TaskStat() calls OSTaskStatHook() every time it executes so that you can add your own

statistics as needed. See OS_CORE.C for details on the statistic task. The priority of OS_TaskStat() is always

set to OS_LOWEST_PRIO-1.

The global variables OSCPUUsage, OSIdleCtrMax, OSIdleCtrRun, OSTaskStatStk[], and OSStatRdy

are not declared when OS_TASK_STAT_EN is set to 0, which reduces the amount of RAM needed by µC/OS-II

if you don’t intend to use the statistic task. OSIdleCtrRun contains a snapshot of OSIdleCtr just before

OSIdleCtr is cleared to zero every second. OSIdleCtrRun is not used by µC/OS-II for any other purpose.

However, you can read and display OSIdleCtrRun if needed.

OS_TASK_STAT_STK_CHK_EN
This constant allows the statistic task to determine the actual stack usage of each active task. If

OS_TASK_STAT_EN is set to 0 (the statistic task is not enabled) but, you can call OS_TaskStatStkChk()

yourself from one of your tasks. If OS_TASK_STAT_EN is set to 1, stack sizes will be determined every

second by the statistic task.

OS_TASK_SUSPEND_EN
OS_TASK_SUSPEND_EN enables (when set to 1) or disables (when set to 0) code generation of the functions

OSTaskSuspend() and OSTaskResume(), which allows you to explicitly suspend and resume tasks,

respectively. If your application never uses these functions, you can reduce the amount of code space used by

µC/OS-II by setting OS_TASK_SUSPEND_EN to 0.

 570

OS_TASK_SW_HOOK_EN
Normally, µC/OS-II requires that you have a context switch hook function called OSTaskSwHook(). When set

to 0, this constant allows you to omit OSTaskSwHook() from your code. This configuration constant was

added to reduce the amount of overhead during a context switch in applications that doesn’t require the context

switch hook. Of course, you will also need to remove the calls to OSTaskSwHook() from

OSTaskStartHighRdy(), OSCtxSw() and OSIntCtxSw() in OS_CPU_A.ASM.

OS_TASK_TMR_PRIO (APP_CFG.H)
OS_TASK_TMR_PRIO specifies the priority of the timer management task. You can set the priority of the timer

task to anything you want. Note that timer callback functions are executed by the timer task.

OS_TASK_TMR_PRIO needs to be set in your application file called APP_CFG.H.

OS_TASK_QUERY_EN
OS_TASK_QUERY_EN enables (when set to 1) or disables (when set to 0) code generation of the function

OSTaskQuery(). If your application never uses this function, you can reduce the amount of code space used by

µC/OS-II by setting OS_TASK_QUERY_EN to 0.

 571

Time Management

OS_TIME_DLY_HMSM_EN
OS_TIME_DLY_HMSM_EN enables (when set to 1) or disables (when set to 0) the code generation of the function

OSTimeDlyHMSM(), which is used to delay a task for a specified number of hours, minutes, seconds, and

milliseconds.

OS_TIME_DLY_RESUME_EN
OS_TIME_DLY_RESUME_EN enables (when set to 1) or disables (when set to 0) the code generation of the

function OSTimeDlyResume().

OS_TIME_GET_SET_EN
OS_TIME_GET_SET_EN enables (when set to 1) or disables (when set to 0) the code and data generation of the

functions OSTimeGet() and OSTimeSet(). If you don’t need to use the 32-bit tick counter OSTime, then you

can save yourself 4 bytes of data space and code space by not having the code for these functions generated by

the compiler.

OS_TIME_TICK_HOOK_EN
Normally, µC/OS-II requires the presence of a function called OSTimeTickHook() which is called at the very

beginning of the tick ISR. When set to 0, this constant allows you to omit OSTimeTickHook() from your

code. This configuration constant was added to reduce the amount of overhead during a tick ISR in applications

that doesn’t require this hook.

 572

Timer Management

Note that timer management requires semaphores and thus, you need to set OS_SEM_EN to 1.

OS_TMR_EN
Enables (when set to 1) or disables (when set to 0) the code generation of the timer management services.

OS_TMR_CFG_MAX
Determines the maximum number of timers you can have in your application. Depending on the amount of

RAM available in your product, you can have hundreds or even thousands of timers (max. is 65500). 36 entries

are reserved.

OS_TMR_CFG_NAME_EN
This constant determines whether names can be assigned to timers. If OS_TMR_CFG_NAME_EN is set to 0, this

feature is disabled and no RAM is used in the OS_TMR for the timer name.

OS_TMR_CFG_WHEEL_SIZE
Timers are updated using a rotating wheel. This ‘wheel’ allows to reduce the number of timers that need to be

updated by the timer manager task. The size of the wheel should be a fraction of the number of timers you have

in your application. In other words:

OS_TMR_CFG_WHEEL_SIZE <= OS_TMR_CFG_MAX

This value should be a number between 2 and 1024. Timer management overhead is somewhat determined by

the size of the wheel. A large number of entries might reduce the overhead for timer management but would

require more RAM. Each entry requires a pointer and a count (16-bit value). We recommend a number that is

NOT a multiple of the tick rate. If your application has many timers then it’s recommended that you have a

high value. As a starting value, you could use OS_TMR_CFG_MAX / 4.

OS_TMR_CFG_TICKS_PER_SEC
This configuration constant determines the rate at which timers are updated (in Hz). Timer updates should be

done at a fraction of the tick rate (i.e. OS_TICKS_PER_SEC). We recommend that you update timers at 10

Hz.

 573

Function Summary

Table 17.1 lists each µC/OS-II function by type (Service), indicates which variables enable the code

(Set to 1), and lists other configuration constants that affect the function (Other Constants).

Of course, OS_CFG.H must be included when µC/OS-II is built, in order for the desired configuration to take

effect.

Table 17.1 µC/OS-II functions and #define configuration constants.

Service Set to 1 Other Constants

Miscellaneous

OSEventNameGet() OS_EVENT_NAME_EN N/A

OSEventNameSet() OS_EVENT_NAME_EN N/A

OSEventPendMulti() OS_EVENT_MULTI_EN

OSInit() N/A OS_MAX_EVENTS

OS_Q_EN and OS_MAX_QS

OS_MEM_EN

OS_TASK_IDLE_STK_SIZE

OS_TASK_STAT_EN

OS_TASK_STAT_STK_SIZE

OSSafetyCriticalStart() OS_SAFETY_CRITICAL_IEC61508

OSSchedLock() OS_SCHED_LOCK_EN N/A

OSSchedUnlock() OS_SCHED_LOCK_EN N/A

OSStart() N/A N/A

OSStatInit() OS_TASK_STAT_EN &&

OS_TASK_CREATE_EXT_EN

OS_TICKS_PER_SEC

OSVersion() N/A N/A

Interrupt Management

OSIntEnter() N/A N/A

OSIntExit() N/A N/A

Event Flags

OSFlagAccept() OS_FLAG_EN OS_FLAG_ACCEPT_EN

OSFlagCreate() OS_FLAG_EN OS_MAX_FLAGS

OSFlagDel() OS_FLAG_EN OS_FLAG_DEL_EN

OSFlagNameGet() OS_FLAG_EN OS_FLAG_NAME_EN

OSFlagNameSet() OS_FLAG_EN OS_FLAG_NAME_EN

OSFlagPend() OS_FLAG_EN OS_FLAG_WAIT_CLR_EN

OSFlagPost() OS_FLAG_EN N/A

OSFlagQuery() OS_FLAG_EN OS_FLAG_QUERY_EN

 574

Message Mailboxes

OSMboxAccept() OS_MBOX_EN OS_MBOX_ACCEPT_EN

OSMboxCreate() OS_MBOX_EN OS_MAX_EVENTS

OSMboxDel() OS_MBOX_EN OS_MBOX_DEL_EN

OSMboxPend() OS_MBOX_EN N/A

OSMboxPendAbort() OS_MBOX_EN OS_MBOX_PEND_ABORT_EN

OSMboxPost() OS_MBOX_EN OS_MBOX_POST_EN

OSMboxPostOpt() OS_MBOX_EN OS_MBOX_POST_OPT_EN

OSMboxQuery() OS_MBOX_EN OS_MBOX_QUERY_EN

Memory Partition Management

OSMemCreate() OS_MEM_EN OS_MAX_MEM_PART

OSMemGet() OS_MEM_EN N/A

OSMemNameGet() OS_MEM_EN OS_MEM_NAME_EN

OSMemNameSet() OS_MEM_EN OS_MEM_NAME_EN

OSMemPut() OS_MEM_EN N/A

OSMemQuery() OS_MEM_EN OS_MEM_QUERY_EN

Mutex Management

OSMutexAccept() OS_MUTEX_EN OS_MUTEX_ACCEPT_EN

OSMutexCreate() OS_MUTEX_EN OS_MAX_EVENTS

OSMutexDel() OS_MUTEX_EN OS_MUTEX_DEL_EN

OSMutexPend() OS_MUTEX_EN N/A

OSMutexPost() OS_MUTEX_EN N/A

OSMutexQuery() OS_MUTEX_EN OS_MUTEX_QUERY_EN

Message Queues

OSQAccept() OS_Q_EN OS_Q_ACCEPT_EN

OSQCreate() OS_Q_EN OS_MAX_EVENTS

OS_MAX_QS

OSQDel() OS_Q_EN OS_Q_DEL_EN

OSQFlush() OS_Q_EN OS_Q_FLUSH_EN

OSQPend() OS_Q_EN N/A

OSQPendAbort() OS_Q_EN OS_Q_PEND_ABORT_EN

OSQPost() OS_Q_EN OS_Q_POST_EN

OSQPostFront() OS_Q_EN OS_Q_POST_FRONT_EN

OSQPostOpt() OS_Q_EN OS_Q_POST_OPT_EN

OSQQuery() OS_Q_EN OS_Q_QUERY_EN

 575

Semaphore Management

OSSemAccept() OS_SEM_EN OS_SEM_ACCEPT_EN

OSSemCreate() OS_SEM_EN OS_MAX_EVENTS

OSSemDel() OS_SEM_EN OS_SEM_DEL_EN

OSSemPend() OS_SEM_EN N/A

OSSemPendAbort() OS_SEM_EN OS_SEM_PEND_ABORT_EN

OSSemPost() OS_SEM_EN N/A

OSSemQuery() OS_SEM_EN OS_SEM_QUERY_EN

OSSemSet() OS_SEM_EN OS_SEM_SET_EN

Task Management

OSTaskChangePrio() OS_TASK_CHANGE_PRIO_EN OS_LOWEST_PRIO

OSTaskCreate() OS_TASK_CREATE_EN OS_MAX_TASKS

OSTaskCreateExt() OS_TASK_CREATE_EXT_EN OS_MAX_TASKS

OS_TASK_STK_CLR

OSTaskDel() OS_TASK_DEL_EN OS_MAX_TASKS

OSTaskDelReq() OS_TASK_DEL_EN OS_MAX_TASKS

OSTaskResume() OS_TASK_SUSPEND_EN OS_MAX_TASKS

OSTaskNameGet() OS_TASK_NAME_EN N/A

OSTaskNameSet() OS_TASK_NAME_EN N/A

OSTaskStkChk() OS_TASK_CREATE_EXT_EN OS_MAX_TASKS

OSTaskSuspend() OS_TASK_SUSPEND_EN OS_MAX_TASKS

OSTaskQuery() OS_TASK_QUERY_EN OS_MAX_TASKS

OS_TaskStatStkChk() OS_TASK_STAT_STK_CHK_EN N/A

Time Management

OSTimeDly() N/A N/A

OSTimeDlyHMSM() OS_TIME_DLY_HMSM_EN OS_TICKS_PER_SEC

OSTimeDlyResume() OS_TIME_DLY_RESUME_EN OS_MAX_TASKS

OSTimeGet() OS_TIME_GET_SET_EN N/A

OSTimeSet() OS_TIME_GET_SET_EN N/A

OSTimeTick() N/A N/A

Timer Management

OSTmrCreate() OS_TMR_EN N/A

OSTmrDel() OS_TMR_EN N/A

OSTmrNameGet() OS_TMR_EN &&

OS_TMR_CFG_NAME_EN

N/A

OSTmrRemainGet() OS_TMR_EN N/A

OSTmrStart() OS_TMR_EN N/A

OSTmrStop() OS_TMR_EN N/A

OSTmrSignal() OS_TMR_EN OS_TMR_CFG_TICKS_PER_SEC

 576

User-Defined Functions

OSTaskCreateHook() OS_CPU_HOOKS_EN N/A

OSTaskDelHook() OS_CPU_HOOKS_EN N/A

OSTaskStatHook() OS_CPU_HOOKS_EN N/A

OSTaskSwHook() OS_CPU_HOOKS_EN OS_TASK_SW_HOOK_EN

OSTimeTickHook() OS_CPU_HOOKS_EN OS_TIME_TICK_HOOK_EN

