
 1

Micriµm

© Copyright 2010, Micriµm
All Rights reserved

New Features and Services

since

µC/OS-II V2.00

(Current Version: V2.90)

www.Micrium.com

http://www.micrium.com/

 2

Introduction

This document describes all the features and services added to µC/OS-II since the introduction

of the hard cover book MicroC/OS-II, The Real-Time Kernel, ISBN 0-87930-543-6. The

software provided with the book was version 2.00 or V2.04. The version number of the change

is shown when appropriate.

Delete task on incorrect return (V2.89)

µC/OS-II now contains a new function called OS_TaskReturn(). All µC/OS-II tasks are

not allowed to return. If a task returns by mistake, OS_TaskReturn() catches those and

deletes the task.

OS_TaskReturn() calls OSTaskReturnHook() which in turn calls

App_TaskreturnHook().

 3

Pend on Multiple Events (V2.86)

µC/OS-II now contains a new function called OSEventPendMulti() which allows a task to

pend on multiple events (semaphores, mailboxes and queues) in any combination (see example

diagram below). This new function is found in OS_CORE.C and is enabled by setting

OS_EVENT_MULTI_EN to 1 in OS_CFG.H.

With OSEventPendMulti() it’s possible to pend on any number of semaphores, mailboxes

and message queues at the same time (we don’t support Mutex and Event Flags at this time). If a

task pends on a combination of the above ‘events’ then, as soon an event is posted (and the

pending task is the highest priority task pending on the event), the waiting task will wake up and

be ‘handed’ the event. If events are present as the task pends then ALL the available events will

be provided to the task.

Task OR

ISR

ISR

ISR

ISR

Task

Task

Task

Post

Post

Post

Post

Post

Post

Pend

Timeout

 4

Timer Manager (V2.81)

µC/OS-II now provides support for periodic as well as one-shot timers. This functionality is

found in OS_TMR.C and is enabled by setting OS_TMR_EN to 1 in OS_CFG.H. Your

application can have any number of timers (up to 65500). When a timer times out, an optional

callback function can be called allowing you to perform any action (signal a task, turn on/off a

light, etc.). Each timer has its own callback function.

IMPORTANT

The APIs for the Timer Manager were changed in V2.83 from what

they were in V2.81 and V2.82. This was necessary to correct some

issues with the Timer Manager. Please consult the Reference

Manual for the new APIs.

When timer management is enabled, µC/OS-II creates a timer task (OSTmrTask()) which is

responsible for updating all the timers. The priority of this task is determined by

OS_TASK_TMR_PRIO which should be defined in your application’s APP_CFG.H.

The timer manager provides a number of services to your applications. Specifically, you can call

one of the following functions (see the µC/OS-II reference manual for a description of these

functions) from your tasks:

 5

OSTmrCreate() Create a timer

OSTmrDel() Delete a timer

OSTmrRemainGet() Determine how much time before a timer expires

OSTmrNameGet() Get the name of a timer

OSTmrStateGet() Get the state of a timer (UNUSED, STOPPED, RUNNING, COMPLETED)

OSTmrStart() Start a timer

OSTmrStop() Stop a timer

You should note that you CANNOT call these functions from ISRs.

The drawing below shows the task model of the Timer Manager. You should note that

semaphore management needs to be enabled (you need to set OS_SEM_EN to 1 in OS_CFG.H)

for the timer manager to work. The timer manager requires two (2) semaphores.

(1) An ISR or an application task needs to ‘signal’ a counting semaphore by calling

OSTmrSignal() at the rate specified in OS_TMR_CFG_TICK_RATE (see

OS_CFG.H). The counting semaphore is called OSTmrSemSignal that is initialized to

0 by µC/OS-II when OSInit() is called. You should note that you should ONLY call

OSTmrSignal() and not worry about the semaphore; it’s encapsulated by

OSTmrSignal().

(2) The timer management task (OSTmrTask()) pends forever on the counting semaphore

waiting for it to be signaled. When the semaphore is signaled, OSTmrTask() acquires

another semaphore (a binary semaphore in this case, OSTmrSem) to gain exclusive

access to timer data structures. When OSTmrTask() is the owner of the semaphore it

updates all the timers created by your application.

(3) Your application accesses timer data structure via interface functions. These functions

allow you to create, delete, start and stop timers as well as examine the amount of time

remaining before a timer times out.

 6

The drawing below shows the data structures used in the timer manager.

(4) Each timer is characterized by a data structure of type OS_TMR (see ucos_ii.h). Each

timer contains the ‘period’ of the timer (if the timer is to operate in periodic mode), the

name of the timer, a timer ‘match’ value (described later) and other fields used to link the

timer. Free timers are placed in a singly linked list of ‘unused’ timers pointed to by

OSTmrFreeList.

OS_TMR_WHEEL

OSTmrWheelTbl[]

(4)

[0]

[1]

[2]

[OS_TMR_CFG_WHEEL_SIZE-1]

#Entries in Spoke Pointer to OS_TMR list

0 0

0 0

2

3

0

0

0

0

0

0

0

0

0

0

0

0

OS_TMR

0

OS_TMR

OSTmrFreeList OSTmrFree

OSTmrUsed

3

5
(5)

(7)

(8)

OSTmrTime 325

(6)

OSTmrSignal()

OSTmrSemSignal

ISR

Task

OR
OSTmrTask()

OSTimeTickHook()

Application

Tasks

OSTmrCreate()

OSTmrDel()

OSTmrRemainGet()

OSTmrNameGet()

OSTmrStateGet()

OSTmrStart()

OSTmrStop()

Timer

Data

Structures

(1)

(2)

(3)

OSTmrSem

OS_TMR.C

 7

(5) The number of free timers is held in OSTmrFree and the number of used (or allocated)

timers is held in OSTmrUsed. Of course, the total number of timers is the sum of these

two fields and, unless you don’t properly use the timer management services, that sum

should always equal OS_TMR_CFG_MAX.

(6) Every time OSTmrSignal() is called, the unsigned 32-bit variable OSTmrTime is

incremented by one and used to see if timers have expired.

(7) The timer manager keeps track of which timer it needs to update using a ‘timer wheel’.

The wheel is basically an array of structures of type OS_TMR_WHEEL (see ucos_ii.h)

that wraps around. This structure contains two fields: a pointer to a doubly-linked list of

OS_TMR structures and, the number of entries in that list.

(8) The ‘wheel’ contains OS_TMR_CFG_WHEEL_SIZE entries or spokes.

OS_TMR structures are inserted in the wheel when you call OSTmrStart(). The position (i.e.

spoke) in OSTmrWheelTbl[] for a specific timer is given by:

match = OSTmrTime + period;

spoke = match % OS_TMR_CFG_WHEEL_SIZE;

The ‘match’ corresponds to the value that OSTmrTime needs to reach before the timer expires.

For example, let’s say that OSTmrTime is 0 (just initialized) and we want to create a timer that

will expire every second (assuming OS_TMR_CFG_TICKS_PER_SEC is set to 10). Also, let’s

assume that OS_TMR_CFG_WHEEL_SIZE is 8 (as shown in the diagram above).

match = OSTmrTime + period;

match = 0 + 10;

match = 10;

spoke = match % OS_TMR_CFG_WHEEL_SIZE;

spoke = 10 % 8;

spoke = 2;

This means that OSTmrStart() will obtain a free OS_TMR data structure from the free list of

timers and the place this data structure in OSTmrWheelTbl[] at position #2 in the table.

OSTmrStart() will then store the ‘match’ value in the OS_TMR data structure.

Every time OSTmrTime is incremented by OSTmrTask(), OSTmrTask() goes through ALL

the OS_TMR structures placed at spoke (OSTmrTime % OS_TMR_CFG_WHEEL_SIZE) to see

if OSTmrTime ‘matches’ the value store in the OS_TMR structure. If a match occurs, the timer

is removed from the list. If the timer was started by OSTmrStart() with a ‘periodic’ option

then, the OS_TMR structure is placed in the OSTmrWheelTbl[] by calculating its new

position, again using OSTmrTime + period. In our example, the new ‘spoke’ would be:

 8

match = OSTmrTime + period;

match = 10 + 10;

match = 20;

spoke = match % OS_TMR_CFG_WHEEL_SIZE;

spoke = 20 % 8;

spoke = 4;

The use of a timer wheel basically reduces the execution time of the timer task so that it only

handles a few of the timers. Of course, the worst case is such that all timers are placed in the

same spoke of the timer wheel. However, statistically, this will occur rarely. It’s generally

recommended to keep the size of the wheel a fraction of the total number of times. In other

words, you should set:

OS_TMR_CFG_WHEEL_SIZE <= Fraction of (OS_TMR_CFG_MAX)

A fraction of 2 to 8 should work well.

RAM usage (in bytes) for the timer manager is shown below:

2 * sizeof(INT16U) +

1 * sizeof(INT32U) +

3 * sizeof(POINTER) +

OS_TASK_TMR_STK_SIZE * sizeof(OS_STK) +

OS_TMR_CFG_WHEEL_SIZE * (sizeof(INT16U) + sizeof(POINTER)) +

OS_TMR_CFG_MAX * (4 * sizeof(POINTER) +

 2 * sizeof(INT32U) +

 3 * sizeof(INT8U) +

 OS_TMR_CFG_NAME_SIZE * sizeof(INT8U))

Because INT8Us and BOOLEANs are typically 1 byte, INT16Us are 2 bytes and INT32Us are 4

bytes, we can simplify the above equation as follows:

2 * 2 +

1 * 4 +

3 * sizeof(POINTER) +

OS_TASK_TMR_STK_SIZE * sizeof(OS_STK) +

OS_TMR_CFG_WHEEL_SIZE * (2 + sizeof(POINTER)) +

OS_TMR_CFG_MAX * (4 * sizeof(POINTER) +

 2 * 4 +

 3 +

 OS_TMR_CFG_NAME_SIZE)

Or,

8 +

3 * sizeof(POINTER) +

OS_TASK_TMR_STK_SIZE * sizeof(OS_STK) +

OS_TMR_CFG_WHEEL_SIZE * (2 + sizeof(POINTER)) +

OS_TMR_CFG_MAX * (4 * sizeof(POINTER) + 11 + OS_TMR_CFG_NAME_SIZE)

 9

Support for 255 tasks (V2.80)

µC/OS-II can now support up to 255 tasks. To support up to 255 tasks, we simply increased the

ready list and event wait lists to a matrix of 16x16 instead of 8x8. In fact, the actual size of the

matrix (whether 8x8 or 16x16) depends on the value of OS_LOWEST_PRIO in OS_CFG.H. If

OS_LOWEST_PRIO is less than or equal to 63, we use an 8x8 matrix and thus µC/OS-II

behaves exactly the same as it used to. If you specify a value for OS_LOWEST_PRIO to be

greater than 63, we use the 16x16 matrix as show below.

You should note that the actual size of the matrix depends on OS_LOWEST_PRIO. For

example, if OS_LOWEST_PRIO is 10 then the matrix is actually 2x8 (two bytes of 8 bits).

Similarly, if OS_LOWEST_PRIO is set to 47, the matrix will be 6x8. When

OS_LOWEST_PRIO is above 63, we use 16-bit wide entries. For example, if you specify

OS_LOWEST_PRIO to be 100 then the matrix will be 7x16 (7 entries of 16 bits each). You

CANNOT set OS_LOWEST_PRIO to 255 because this value is reserved for OS_PRIO_SELF.

7

0

0

15

HPT (0)

LPT (254)

NEVER used,

OS_PRIO_SELF

HPT (0)

LPT (63)

OSRdyGrp OSRdyTbl[]

8x8 Max.

OSRdyGrp OSRdyTbl[]

16x16 Max.

OS_LOWEST_PRIO <= 63 OS_LOWEST_PRIO > 63

0 15

0 7

 10

New Files

APP_CFG.H (Added in V2.80)

We now assume the presence of a file called APP_CFG.H which is declared in your application. The

purpose of this file is to assign task priorities, stack sizes and other configuration information for your

application.

OS_CFG_R.H (Added in V2.70)

This file is ‘reference’ file so that you don’t have to create this file from scratch. OS_CFG_R.H has been

added in V2.70 and is found in the ‘Source’ directory of the microprocessor independent portion of

µC/OS-II. It is recommended that you copy OS_CFG_R.H to OS_CFG.H of your project directory.

OS_TMR.C (Added in V2.81, revised in V2.83)

We added a timer manager function in µC/OS-II. You can now define any number of timers. The timers

can be periodic or one-shots. A user definable function can be called when the timer expires. One such

function is definable for each timer in your application.

New Port Files

OS_DBG.C (Added in V2.62 but renamed from OS_DEBUG.C in V2.70)

OS_DBG_R.C (Added in V2.70)

This file should be placed in the same directory as OS_CPU_C.C, OS_CPU.H and OS_CPU_A.ASM of

the port you are using. OS_DBG.C defines a series of variables that are placed in ROM (code space).

These variables are used by some Kernel Aware Debuggers to get information about µC/OS-II and its

configuration. If you DON’T use a Kernel Aware Debugger that requires this file, you DON’T need to

have it. Check you Kernel Aware Debugger documentation. OS_DBG.C used to be called OS_DEBUG.C

in V2.62.

OS_DBG_R.C is a ‘reference’ file so that you don’t have to create this file from scratch. OS_DBG_R.C

has been added in V2.70 and is found in the ‘Source’ directory of the microprocessor independent portion

of µC/OS-II.

 11

Changes

uCOS_II.H (Changed in V2.70, V2.80 and V2.84)

This file now includes #include statements to include APP_CFG.H, OS_CPU.H and OS_CFG.H. This

allows you to compile µC/OS-II without the needs of any other library functions.

Chaned error codes to make them more consistent. Specifically, all error codes start with OS_ERR_. The

old error codes have been kept for backward compatibility but you should now use and check for the new

error codes.

Time delays and Timeouts (Changed in V2.87)

All time delays and timeouts are now implemented using an unsigned 32-bit variable. This actually

simplified OSTimeDlyHMSM() and allowed OSTimeDlyResume() to work with any delay. Of course,

this means that additional storage is needed in the tasks OS_TCBs (2 extra bytes) but that should not be a

problem with most applications. It turns out that close to 90% of µC/OS-II users use 32-bit CPUs.

Names of objects stored as pointers (Changed in V2.87)

Names of objects were previously stored in RAM inside the different kernel objects. Specifically, RAM

storage was allocated in the OS_TCB, for example, to store the name of a task. As of V2.87, all such names

are now referenced using pointers. This drastically reduces the amount of RAM needed to store ASCII

names since names are now typically allocated by the compiler as constant strings and thus placed in ROM.

This was done to reduce the amount of RAM needed (a processor typically has more ROM than RAM) and

also to lift the limit of the length of a kernel object name.

 12

New #define Constants and Macros

OS_APP_HOOKS_EN (OS_CFG.H, V2.85)

This constant specifies whether µC/OS-II‘s hook functions will call application defined hooks.

Specifically, when set to 1 …

The µC/OS-II hook … Calls the Application-define hook …

OSTaskCreateHook() App_TaskCreateHook()

OSTaskDelHook() App_TaskDelHook()

OSTaskIdleHook() App_TaskIdleHook()

OSTaskStatHook() App_TaskStatHook()

OSTaskSwHook() App_TaskSwHook()

OSTCBInitHook() App_TCBInitHook()

OSTimeTickHook() App_TimeTickHook()

OS_ARG_CHK_EN (OS_CFG.H, V2.04)

This constant is used to specify whether argument checking will be performed at the beginning of most of

µC/OS-II services. You should always choose to turn this feature on (when set to 1) unless you need to

get the best performance possible out of µC/OS-II or, you need to reduce code size.

OS_CRITICAL_METHOD #3 (OS_CPU.H, V2.04)

This constant specifies the method used to disable and enable interrupts during critical sections of code.

Prior to V2.04, OS_CRITICAL_METHOD could be set to either 1 or 2. In V2.04, I added a local variable

(i.e. cpu_sr) in most function calls to save the processor status register which generally holds the state of

the interrupt disable flag(s). You would then declare the two critical section macros as follows:

 #define OS_ENTER_CRITICAL() (cpu_sr = OS_CPUSR_Save())

 #define OS_EXIT_CRITICAL() (OS_CPU_SR_Restore(cpu_sr))

Note that the functions OS_CPU_SR_Save() and OS_CPU_SR_Restore() would be written

in assembly language and would typically be found in OS_CPU_A.ASM (or equivalent).

OS_DEBUG_EN (OS_CFG.H, V2.60)

This constant is used to enable ROM constants used for debugging using a kernel aware debugger. The

constants are found in OS_CORE.C.

OS_EVENT_MULTI_EN (OS_CFG.H, V2.86)

This constant determines whether the code to support pending on multiple events will be enabled (1) or not

(0). This constant thus enables code for the function OSEventPendMulti(). This #define was

added in V2.86.

 13

OS_EVENT_NAME_EN (OS_CFG.H, V2.60 and changed in V2.87)

This constant determines whether names can be assigned to a semaphore, a mutex, a mailbox or a message

queue. If OS_EVENT_NAME_EN is set to 0, this feature is disabled.

OS_FLAG_EN (OS_CFG.H, V2.51)

This constant is used to specify whether you will enable (when 1) code generation for the event flags.

OS_FLAG_NAME_EN (OS_CFG.H, V2.60 and changed in V2.87)

This constant determines whether names can be assigned to event flag groups. If OS_FLAG_NAME_EN is

set to 0, this feature is disabled.

OS_FLAG_WAIT_CLR_EN (OS_CFG.H, V2.51)

This constant is used to enable code generation (when 1) to allow to wait on cleared event flags.

OS_MAX_FLAGS (OS_CFG.H, V2.51)

This constant is used to determine how many event flags your application will support.

OS_MBOX_PEND_ABORT_EN (OS_CFG.H, V2.84)

This constant is used to determine whether you will enable (when 1) code generation for the

OSMboxPendAbort() function.

OS_MEM_NAME_EN (OS_CFG.H, V2.60 and changed in V2.87)

This constant determines whether names can be assigned to memory partitions. If OS_MEM_NAME_EN is

set to 0, this feature is disabled and no RAM is used in the OS_MEM for the memory partition.

OS_MUTEX_EN (OS_CFG.H, V2.04)

This constant is used to specify whether you will enable (when 1) code generation for mutual exclusion

semaphores.

OS_Q_PEND_ABORT_EN (OS_CFG.H, V2.84)

This constant is used to determine whether you will enable (when 1) code generation for the

OSQPendAbort() function.

OS_SEM_PEND_ABORT_EN (OS_CFG.H, V2.84)

This constant is used to determine whether you will enable (when 1) code generation for the

OSSemPendAbort() function.

 14

OS_TASK_NAME_EN (OS_CFG.H, V2.60 and changed in V2.87)

This constant determines whether names can be assigned to tasks. If OS_TASK_NAME_EN is set to 0, this

feature is disabled and no RAM is used in the OS_TCB for the task name.

OS_TASK_PROFILE_EN (OS_CFG.H, V2.60)

This constant allows variables to be allocated in each task’s OS_TCB that hold performance data about each

task. Specifically, if OS_TASK_PROFILE_EN is set to 1, each task will have a variable to keep track of

the number of context switches, the task execution time, the number of bytes used by the task and more.

OS_TASK_STAT_STK_CHK_EN (OS_CFG.H, V2.60)

This constant allows the statistic task to determine the actual stack usage of each active task. If

OS_TASK_STAT_EN is set to 0 (the statistic task is not enabled), you can call OS_TaskStatStkChk()

yourself from one of your tasks. . If OS_TASK_STAT_EN is set to 1, stack sizes will be determined every

second.

OS_TASK_SW_HOOK_EN (OS_CFG.H, V2.60)

Normally, µC/OS-II requires that you have a context switch hook function called OSTaskSwHook().

When set to 0, this constant allows you to omit OSTaskSwHook() from your code. This configuration

constant was added to reduce the amount of overhead during a context switch in applications that doesn’t

require the context switch hook. Of course, you will also need to remove the calls to OSTaskSwHook()

from OSTaskStartHighRdy(), OSCtxSw() and OSIntCtxSw() in OS_CPU_A.ASM.

OS_TASK_TMR_STK_SIZE (OS_CFG.H, V2.81)

This #define determines the stack size (in number of stack-size elements, i.e. OS_STK) of the timer task.

The size of the timer task’s stack greatly depends on the processor architecture and the functions that are

called when timers expire. Note that if you set OS_TMR_EN to 0 in OS_CFG.H then the value you set for

OS_TASK_TMR_STK_SIZE is irrelevant because the timer functionality would be disabled.

OS_TICK_STEP_EN (OS_CFG.H, V2.60)

µC/OS-View can now ‘halt’ µC/OS-II’s tick processing and allow you to issue ‘step’ commands from

µC/OS-View. In other words, µC/OS-View can prevent µC/OS-II from calling OSTimeTick() so

that timeouts and time delays are no longer processed. However, though a keystroke from µC/OS-View,

you can execute a single tick at a time. If OS_TIME_TICK_HOOK_EN (see below) is set to 1,

OSTimeTickHook() is still executed at the regular tick rate in case you have time critical items to take

care of in your application.

OS_TIME_TICK_HOOK_EN (OS_CFG.H, V2.60)

Normally, µC/OS-II requires the presence of a function called OSTimeTickHook() which is called at

the very beginning of the tick ISR. When set to 0, this constant allows you to omit OSTimeTickHook()

from your code. This configuration constant was added to reduce the amount of overhead during a tick ISR

in applications that doesn’t require this hook.

 15

OS_TMR_EN (OS_CFG.H, V2.81)

This #define enables (when set to 1) or disables (when set to 0) the timer management code.

OS_TMR_CFG_MAX (OS_CFG.H, V2.81)

This #define determines the maximum number of timers that can exist in the application. If

OS_TMR_EN is set to 1, you should declare AT LEAST two (2) timers.

OS_TMR_CFG_NAME_EN (OS_CFG.H, V2.81 and changed in V2.87)

This #define determines whether names can be assigned to timers.

OS_TMR_CFG_WHEEL_SIZE (OS_CFG.H, V2.81)

This #define determines the number of entries in the timer wheel. This value should be a number

between 2 and 1024. Timer management overhead is somewhat determined by the size of the wheel. A

large number of entries might reduce the overhead for timer management but would require more RAM.

Each entry requires a pointer and a count (16-bit value). We recommend a number that is NOT a multiple

of the tick rate. If your application has many timers then it’s recommended that you have a high value. As

a starting value, you could use OS_TMR_CFG_MAX / 4.

OS_TMR_CFG_TICKS_PER_SEC (OS_CFG.H, V2.81)

This #define determines the rate at which timers will be updated. You would typically set to a fraction

of the tick rate (i.e. OS_TICKS_PER_SEC). We recommend that you set

OS_TMR_CFG_TICKS_PER_SEC to 10 (i.e. 10 Hz).

 16

The following table summarizes some of the new #define constants in OS_CFG.H which

were all added in since V2.00.

#define name in OS_CFG.H ... to enable the function(s):

OS_APP_HOOKS_EN App_TaskCreateHook()

App_TaskDelHook()

App_TaskIdleHook()

App_TaskStatHook()

App_TaskSwHook()

App_TCBInitHook()

App_TimeTickHook()
OS_DEBUG_EN Enable debug constants in OS_CORE.C. If you

are using a kernel aware debugger, you should

enable this feature.

OS_EVENT_NAME_EN OSEventNameGet()

OSEventNameSet()

And, to allow naming semaphores, mutexes,

mailboxes and message queues.
OS_EVENT_MULTI_EN OSEventPendMulti()

OS_FLAG_ACCEPT_EN OSFlagAccept()

OS_FLAG_DEL_EN OSFlagDel()

OS_FLAG_NAME_EN OSFlagNameGet()

OSFlagNameSet()

And, to allow naming event flag groups.
OS_FLAG_QUERY_EN OSFlagQuery()

OS_MBOX_ACCEPT_EN OSMboxAccept()

OS_MBOX_DEL_EN OSMboxDel()

OS_MBOX_PEND_ABORT_EN OSMboxPendAbort()

OS_MBOX_POST_EN OSMboxPost()

OS_MBOX_POST_OPT_EN OSMboxPostOpt()

OS_MBOX_QUERY_EN OSMBoxQuery()

OS_MEM_NAME_EN OSMemNameGet()

OSMemNameSet()

OS_MEM_QUERY_EN OSMemQuery()

OS_MUTEX_ACCEPT_EN OSMutexAccept()

OS_MUTEX_DEL_EN OSMutexDel()

OS_MUTEX_QUERY_EN OSMutexQuery()

 17

OS_Q_ACCEPT_EN OSQAccept()

OS_Q_DEL_EN OSQDel()

OS_Q_FLUSH_EN OSQFlush()

OS_Q_PEND_ABORT_EN OSQPendAbort()

OS_Q_POST_EN OSQPost()

OS_Q_POST_FRONT_EN OSQPostFront()

OS_Q_POST_OPT_EN OSQPostOpt()

OS_Q_QUERY_EN OSQQuery()

OS_SEM_ACCEPT_EN OSSemAccept()

OS_SEM_DEL_EN OSSemDel()

OS_SEM_PEND_ABORT_EN OSSemPendAbort()

OS_SEM_QUERY_EN OSSemQuery()

OS_SEM_SET_EN OSSemSet()

OS_TASK_NAME_EN OSTaskNameGet()

OSTaskNameSet()

And, to allow naming tasks.
OS_TASK_PROFILE_EN To allocate variables in OS_TCB for performance

monitoring of each task at run-time.
OS_TASK_QUERY_EN OSTaskQuery()

OS_TASK_STAT_STK_CHK_EN OS_TaskStatStkChk()

OS_TASK_SW_HOOK_EN OSTaskSwHook()

OS_TASK_TMR_STK_SIZE Size in OS_STK elements of the Timer

Management task.

OS_TICK_STEP_EN To support the stepping feature of

µC/OS-View.

OS_TIME_DLY_HMSM_EN OSTimeDlyHMSM()

OS_TIME_DLY_RESUME_EN OSTimeDlyResume()

OS_TIME_GET_SET_EN OSTimeGet() and OSTimeSet()
OS_TIME_TICK_HOOK_EN OSTimeTickHook()

OS_TMR_EN Enables (1) or Disables (0) timer management

functions.
OS_TMR_CFG_MAX Determines the maximum number of timers in

your application.
OS_TMR_CFG_NAME_EN Determines whether names can be assigned to

timers.
OS_TMR_CFG_WHEEL_SIZE Determines the size of the timer wheel (in number

of entries).
OS_TMR_CFG_TICKS_PER_SEC Rate at which timers will be updated (Hz)

OS_SCHED_LOCK_EN OSSchedLock()and OSSchedUnlock()

 18

New Data Types

OS_CPU_SR (OS_CPU.H, V2.04)

This data type is used to specify the size of the CPU status register which is used in conjunction with

OS_CRITICAL_METHOD #3 (see above). For example, if the CPU status register is 16-bit wide then you

would typedef accordingly.

OS_FLAGS (uCOS_II.H, V2.51)

This data type determines how many bits an event flag group will have. You can thus typedef this data

type to either INT8U, INT16U or INT32U to give event flags either 8, 16 or 32 bits, respectively.

OS_TMR (uCOS_II.H, V2.81)

This data type is a timer object which contains information about a specific timer that you started (see

OS_TMR.C).

New Hook Functions

void OSInitHookBegin(void) (OS_CPU.C, V2.04)

This function is called at the very beginning of OSInit() to allow for port specific initialization BEFORE

µC/OS-II gets initialized.

void OSInitHookEnd(void) (OS_CPU.C, V2.04)

This function is called at the end of OSInit() to allow for port specific initialization AFTER µC/OS-II

gets initialized.

void OSTCBInitHook(OS_TCB *ptcb) (OS_CPU.C, V2.04)

This function is called by OSTCBInit() during initialization of the TCB assigned to a newly created task.

It allows port specific initialization of the TCB.

void OSTaskIdleHook(void) (OS_CPU.C, V2.51)

This function is called by OSTaskIdle(). This allows you to STOP the CPU and thus reduce power

consumption while there is nothing to do.

 19

New Functions

The following table provides a list of all the new functions (i.e. services) that YOUR application

can call. The list also includes functions that used to exist but, if these are in this list, it’s

because their API may have changed.

Refer to the Reference Manual of the current release for a description of these functions.

Function Name File Enabled By …
OSEventNameGet() OS_CORE.C OS_EVENT_NAME_EN

OSEventNameSet() OS_CORE.C OS_EVENT_NAME_EN

OSEventPendMulti() OS_CORE.C OS_EVENT_MULTI_EN

OSFlagAccept() OS_FLAG.C OS_FLAG_EN && OS_FLAG_ACCEPT_EN

OSFlagCreate() OS_FLAG.C OS_FLAG_EN

OSFlagDel() OS_FLAG.C OS_FLAG_EN && OS_FLAG_DEL_EN

OSFlagNameGet() OS_FLAG.C OS_FLAG_NAME_EN

OSFlagNameSet() OS_FLAG.C OS_FLAG_NAME_EN

OSFlagPend() OS_FLAG.C OS_FLAG_EN

OSFlagPendGetFlagsRdy() OS_FLAG.C OS_FLAG_EN

OSFlagPost() OS_FLAG.C OS_FLAG_EN

OSFlagQuery() OS_FLAG.C OS_FLAG_EN

OSMboxDel() OS_MBOX.C OS_MBOX_EN && OS_MBOX_DEL_EN

OSMboxPendAbort() OS_MBOX.C OS_MBOX_EN && OS_MBOX_PEND_ABORT_EN

OSMboxPostOpt() OS_MBOX.C OS_MBOX_EN && OS_MBOX_POST_OPT_EN

OSMutexAccept() OS_MUTEX.C OS_MUTEX_EN && OS_MUTEX_ACCEPT_EN

OSMutexCreate() OS_MUTEX.C OS_MUTEX_EN

OSMutexDel() OS_MUTEX.C OS_MUTEX_EN && OS_MUTEX_DEL_EN

OSMutexPend() OS_MUTEX.C OS_MUTEX_EN

OSMutexPost() OS_MUTEX.C OS_MUTEX_EN

OSMutexQuery() OS_MUTEX.C OS_MUTEX_EN && OS_MUTEX_QUERY_EN

OSQAccept() OS_Q.C OS_Q_EN && OS_Q_ACCEPT_EN

OSQDel() OS_Q.C OS_Q_EN && OS_Q_DEL_EN

OSQFlush() OS_Q.C OS_Q_EN && OS_Q_FLUSH_EN

OSQPend() OS_Q.C OS_Q_EN

OSQPendAbort() OS_Q.C OS_Q_EN && OS_Q_PEND_ABORT_EN

OSQPost() OS_Q.C OS_Q_EN

OSQPostFront() OS_Q.C OS_Q_EN && OS_Q_POST_FRONT_EN

OSQPostOpt() OS_Q.C OS_Q_EN && OS_Q_POST_OPT_EN

OSSafetyCriticalStart() OS_CORE.C OS_SAFETY_CRITICAL_IEC61508

OSSemDel() OS_SEM.C OS_SEM_EN && OS_SEM_DEL_EN

OSSemPendAbort() OS_SEM.C OS_SEM_EN && OS_SEM_PEND_ABORT_EN

OSSemSet() OS_SEM.C OS_SEM_EN && OS_SEM_SET_EN

OSTaskNameGet() OS_TASK.C OS_TASK_NAME_EN

OSTaskNameSet() OS_TASK.C OS_TASK_NAME_EN

OSTmrGetName() OS_TMR.C OS_TMR_EN

OSTmrGetRemain() OS_TMR.C OS_TMR_EN

OSTmrStart() OS_TMR.C OS_TMR_EN

OSTmrStop() OS_TMR.C OS_TMR_EN

OSTmrSignal() OS_TMR.C OS_TMR_EN

 20

References

µC/OS-II, The Real-Time Kernel, 2

nd
 Edition

Jean J. Labrosse
CMP Books, 2002
ISBN 1-57820-103-9

Contacts

Micriµm
949 Crestview Circle
Weston, FL 33327
954-217-2036
954-217-2037 (FAX)
e-mail: Jean.Labrosse@Micrium.com

WEB: www.Micrium.com

CMP Books, Inc.
1601 W. 23rd St., Suite 200
Lawrence, KS 66046-9950
(785) 841-1631
(785) 841-2624 (FAX)
WEB: http://www.cmpbooks.com

e-mail: rdorders@cmpbooks.com

mailto:Jean.Labrosse@Micrium.com
http://www.micrium.com/
http://www.cmpbooks.com/
mailto:rdorders@cmpbooks.com

