
MicriµmMicriµmMicriµmMicriµm
Empowering Embedded Systems

µC/OS-II
and the

Xilinx MicroBlaze Processor

Application Note
AN-1013

www.Micrium.com

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

2

Table of Contents

1.00 Introduction 3

1.01 µC/OS-II 3
2.00 The Xilinx MicroBlaze 6
2.01 The MicroBlaze Programmer’s Model 6

3.00 Using the µC/OS-II MicroBlaze Port 9
4.00 Directories and Files 10
4.01 os_cpu.h 10
4.02 os_cpu_c.c 13
4.03 os_cpu_a.s 15

4.03.01 os_cpu_a.s, OSStartHighRdy() 16
4.03.02 os_cpu_a.s, OSCtxSw() 17
4.03.03 Handling Interrupts 22
4.03.04 os_cpu_a.s, OS_CPU_ISR() 24
4.03.05 os_cpu_a.s, OSIntCtxSw() 26
4.03.06 os_cpu_a.s, OS_CPU_SR_Save() 27
4.03.07 os_cpu_a.s, OS_CPU_SR_Restore() 28

4.04 os_dbg.c 28
5.00 An Example Application 29
5.01 bsp.h 29
5.02 bsp.c 29
5.03 helloworld.c 31

6.00 Configuring µC/OS-II 34
7.00 Running the Example Application 36
Licensing 37
Acknowledgements 37
References 37
Contacts 38

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

 3

1.00 Introduction

This application note describes the µC/OS-II port for the Xilinx MicroBlaze soft processor core. A ‘port’ is

the part of the software that adapts µC/OS-II to different processor architectures. The files that comprise

the MicroBlaze port are included with this document, as is an example µC/OS-II-based application. This

application uses a rather generic board support package (which is also included), so it should run on most
MicroBlaze systems with little or no modification. In order to run the example application, you will need

µC/OS-II’s processor-independent source code, which is included with this document.

This document assumes that you have µC/OS-II V2.9 or higher.

1.01 µC/OS-II

µC/OS-II is a completely portable, ROMable, scalable, preemptive, real-time, multitasking kernel.

µC/OS-II is written in ANSI C and contains a small portion of assembly language code to adapt it to

different processor architectures. To date, µC/OS-II has been ported to over 45 different processor

architectures.

µC/OS-II Book

The inner workings of µC/OS-II are described in the µC/OS-II book written by author Jean J. Labrosse

(see References at the end of this application note).

Source Code
µC/OS-II consists of about 5500 lines of what is probably the cleanest source code in the industry.

Portable
Most of µC/OS-II is written in highly portable ANSI C, with target microprocessor-specific code written in

assembly language. Assembly language is kept to a minimum to make µC/OS-II easy to port to other

processors. µC/OS-II can be ported to nearly any microprocessor as long as the microprocessor

provides a stack pointer, and the CPU registers can be pushed onto and popped from the stack. Also, the
C compiler should provide either in-line assembly or language extensions that allow you to enable and

disable interrupts from C. µC/OS-II can run on most 8-, 16-, 32-, or even 64-bit microprocessors or

microcontrollers, and DSPs.

ROMable
µC/OS-II was designed for embedded applications and thus µC/OS-II can be embedded as part of a

product.

Scalable
µC/OS-II was designed so that you can use only the services that you need in your application. This

means that a product with minimal needs can use just a few µC/OS-II services, while another product

can benefit from the full set of features. This allows you to reduce the amount of memory (both RAM and

ROM) needed by µC/OS-II on a per-product basis. Scalability is accomplished with the use of conditional

compilation. Simply specify (through #define constants) which features you need for your application or

product. Everything has been done to reduce both the code and data space required by µC/OS-II.

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

4

Preemptive
µC/OS-II is a fully preemptive real-time kernel. This means that µC/OS-II always runs the highest

priority task that is ready to run. Most commercial kernels are preemptive, and µC/OS-II can offer

comparable or, in many cases, improved performance.

Multitasking
µC/OS-II can manage up to 256 tasks. Each task has a unique priority assigned to it, which means that

µC/OS-II does not currently facilitate round-robin scheduling. Thus, there are 256 priority levels.

Deterministic
Execution time of all µC/OS-II functions and services is deterministic. This means that you can always

know how much time µC/OS-II will take to execute a function or a service. Except for OSTimeTick()

and some of the event flag services, execution time of µC/OS-II services does not depend on the number

of tasks running in your application.

Task Stacks
Each task requires its own stack; however, µC/OS-II allows each task to have a different stack size. This

allows you to reduce the amount of RAM needed in your application. With µC/OS-II’s stack-checking

feature, you can determine exactly how much stack space each task actually requires.

Services
µC/OS-II provides a number of system services, such as semaphores, mutual exclusion semaphores,

event flags, message mailboxes, message queues, fixed-sized memory partitions, task management,
time management functions, and more.

Interrupt Management
Interrupts can suspend the execution of a task. If a high priority task is awakened as a result of the
interrupt, then that task will run as soon as the ISR completes.

Robust and Reliable
In July of 2000, µC/OS-II was certified in an avionics product by the Federal Aviation Administration

(FAA) for use in commercial aircraft by meeting the demanding requirements of the RTCA DO-178B
standard for software used in avionics equipment. In order to meet the requirements of this standard it
must be possible to demonstrate through documentation and testing that the software is both robust and
safe. This is particularly important for an operating system as it demonstrates that it has the proven

quality to be usable in any application. Every feature, function and line of code of µC/OS-II has been

examined and tested to demonstrate that it is safe and robust enough to be used in Safety Critical
Systems where human life is on the line.

MISRA C
µC/OS-II is 99% compliant with the Motor Industry Software Reliability Association (MISRA) C Coding

Standards. These standards were created by MISRA to improve the reliability and predictability of C
programs in critical automotive systems. Members of the MISRA consortium include Delco Electronics,
Ford Motor Company, Jaguar Cars Ltd., Lotus Engineering, Lucas Electronics, Rolls-Royce, Rover Group
Ltd., and other firms and universities dedicated to improving safety and reliability in automotive electronics.
Full details of this standard can be obtained directly from the MISRA web site, http://www.misra.org.uk. A

detailed µC/OS-II compliance matrix describing all of MISRA's 127 C Coding Rules is available from the

Micriµm web site. This continues the quality focus for µC/OS-II. Customers demand that their RTOS

perform reliably in safety-critical environments.

Used in Hundreds of Products

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

 5

µC/OS-II has been used in hundreds of products from companies all around the world.

Colleges and Universities
Many colleges and universities around the world are using µC/OS-II in courses focused on real-time

systems. This ensures that new engineers are trained and ready to use µC/OS-II in products.

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

6

2.00 The Xilinx MicroBlaze

The MicroBlaze is a 32-bit soft processor core. Running at 150 MHz, the MicroBlaze processor delivers
125 D-MIPS for building complex systems for the networking, telecommunication, data communication,
embedded, and consumer markets. The MicroBlaze processor features a RISC architecture with
Harvard-style separate 32-bit instruction and data busses running at full speed to execute programs and
access data from both on-chip and external memory. A standard set of peripherals offers MicroBlaze
designers compatibility and reuse.

The Embedded Development Kit (EDK), including the MicroBlaze soft processor core and a standard set
of peripherals, is available from Xilinx and its distribution partners. The kit features a complete set of
GNU-based software tools, including the compiler, assembler, debugger, and linker.

Tests of this port were made using version 12.1 of the Xilinx EDK.

2.01 The MicroBlaze Programmer’s Model

The visible registers in a MicroBlaze processor are shown in Figure 2-1.

The MicroBlaze architecture defines 32 general purpose registers (GPRs). These registers are classified
as volatile, non-volatile, and dedicated.

The volatile registers are used as temporaries and do not retain values across the function calls.
Registers R3 through R12 are volatile, of which R3 and R4 are used for returning values to the caller

function. Registers R5 through R10 are used for passing parameters between sub-routines.

Registers R19 through R31 retain their contents across function calls and are hence termed non-volatile

registers. The callee function is expected to save any non-volatile registers that are being used. These
are typically saved to the stack during the prologue and then reloaded during the epilogue.

Certain registers are used as dedicated registers and programmers are not expected to use them for any
other purpose. Registers R14 through R17, for example, are used for storing the return address from

interrupts, sub-routines, traps, and exceptions, in that order. Sub-routines are called using the branch and
link instruction, which saves the current Program Counter (PC) onto register R15. Small data area

pointers are used for accessing certain memory locations with a 16-bit immediate value. The read only
(R/O) small data area (SDA) anchor R2 is used to access constants. The other SDA anchor, R13, is

Read/Write (R/W) and is used for accessing the values in the small data read-write section.

Register R1 stores the value of the stack pointer and is updated on entry and exit. R1 points to the last

element placed onto the stack.

You will notice that the MicroBlaze designers decided to number the bits from left (Bit #0) to right (Bit #31).
Also, for this application note, we separated 32-bit numbers with a comma in order to make such numbers
more readable (e.g. 0x0000,0010). This is purely a convention.

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

 7

Figure 2-1, MicroBlaze Register Model

MicroBlaze designates certain address locations for handling interrupts and exceptions, as indicated in
Table 2-1. Note that the comma separating the hexadecimal number DOES NOT represent a fraction but
is used to make the 32-bit number easier to read. This is strictly a convention used in this document.

On MicroBlaze jumps to … Description

Start/Reset 0x0000,0000 Hardware Reset
Exception 0x0000,0008 Exception Handler
Interrupt 0x0000,0010 Interrupt Handler

Table 2-1, MicroBlaze Interrupt and Exception Handling

R0

R1 (SP)

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

R16

R17

R18

R19

R20

R21

R22

R23

R24

R25

R26

R27

R28

R29

R30

R31

PC

MSR

0 31

Always contains 0x0000,0000

Stack Pointer

Return address for Interrupts

Return address for Sub-routines

Return address for Trap (Debugger)

Return address for Exceptions

Program Counter

Machine Status Register

Dedicated

Dedicated

Dedicated

Dedicated

Dedicated

Dedicated

Dedicated

Dedicated

Dedicated Reserved for Assembler

Volatile

Volatile

Volatile

Volatile

Volatile

Volatile

Volatile

Volatile

Volatile

Volatile

Return Values

Return Values

Passing Parameters/Temporaries

Passing Parameters/Temporaries

Passing Parameters/Temporaries

Passing Parameters/Temporaries

Passing Parameters/Temporaries

Passing Parameters/Temporaries

Temporaries

Temporaries

R/W, Small Data Area Anchor

R/O, Small Data Area Anchor

Non-Volatile

Non-Volatile

Non-Volatile

Non-Volatile

Non-Volatile

Non-Volatile

Non-Volatile

Non-Volatile

Non-Volatile

Non-Volatile

Non-Volatile

Non-Volatile

Non-Volatile

Special

Special

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

8

When the device is powered ON, or when a reset occurs, execution starts at 0x0000,0000.

If an exception occurs, MicroBlaze jumps to address location 0x0000,0008.

When an interrupt occurs, the control is passed to address location 0x0000,0010.

At these locations, code is written to jump to the appropriate handlers. The code expected at these
locations is shown in Listing 2-1. MicroBlaze allows exception and interrupt handler routines to be located
at any location that is addressable using 32 bits.

Listing 2-1, Code for Passing Control to Exception and Interrupt Handlers

0x00: bri _start1
0x04: nop
0x08: imm high bits of address (exception handler)

0x0c: bri _exception_handler
0x10: imm high bits of address (interrupt handler)

0x14: bri _interrupt_handler

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

 9

3.00 Using the µC/µC/µC/µC/OSOSOSOS----IIIIIIII MicroBlaze Port

The µC/OS-II MicroBlaze port is capable of running on most MicroBlaze systems. The port expects an

interrupt controller and a timer/counter peripheral to be present in hardware, but these are essentially the
only requirements. If your system includes these two components, you should be able to run the port with
little or no modification. At most, you will only need to make slight changes to the BSP files that
accompany the port.

The following steps should be taken to use µC/OS-II in your MicroBlaze system:

1. Unzip the “Micrium_SDK.zip” to the location specified by the “Readme.txt” and in section 4.00(pg.

10)
2. Modify the BSP files as described in sections 5.01 and 5.02(pg. 29)
3. Within Xilinx Software Development Kit (SDK), create a new board support package project and

specify µC/OS-II as your board support package; you may then configure µC/OS-II options as

described in section 6.00(pg. 34), Configuring µC/OS-II

After completing the above steps, you will be ready to begin developing µC/OS-II-based applications.

µC/OS-II projects can be built and downloaded using SDK, just like any other software project. You may

want to begin with a simple application to make sure that the port is working properly on your system.
One such application is included within the “Micrium_SDK.zip” which will be automatically generated as a
project template once the zip file is unzipped. Section 7.00(pg. 36), Running the Example Application,
details what must be done to use this application.

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

10

 4.00 Directories and Files

The software included in AN-1013.zip, the zip file in which this document is often distributed, is

described below.

When you unzip AN-1013.zip, you will find the following directory and files:

 Micrium\AppNotes\AN1xxx-RTOS\AN1013-uCOS-II-MicroBlaze
 ReadMe.txt
 Micrium_SDK.zip

Micrium\AppNotes\AN1xxx-RTOS\AN1013-uCOS-II-MicroBlaze

This directory contains the documentation for the µC/OS-II MicroBlaze port (i.e. this document).
AN-1013.pdf

ReadMe.txt

This file gives instructions as to where the “Micrium_SDK.zip” file should be unzipped. This file
must be unzipped in the version number of your Xilinx install path(i.e. Xilinx\12.1) in order for the

µC/OS-II BSP template and the µC/OS-II example application to show up as options in SDK.

Micrium_SDK.zip

This zip file contains the µC/OS-II BSP and example application that will be used by SDK. The

zip file is set up in such a way that when it is unzipped in the correct location, it will automatically
place the correct files in their respective locations to allow for the automatic generation of the

BSP and the example application. More specifically, it will place the µC/OS-II bsp where all of the

other bsp templates are located(Xilinx\12.1\SDK\SDK\sw\lib\bsp) and place the example
application where all of the other example applications are
located(Xilinx\12.1\SDK\SDK\sw\lib\sw_apps).

4.01 os_cpu.h

os_cpu.h contains processor- and implementation-specific #define constants, macros, and typedefs.

os_cpu.h for the MicroBlaze is shown in Listing 4-1.

Listing 4-1, os_cpu.h, Globals and Externs

#ifdef OS_CPU_GLOBALS

#define OS_CPU_EXT

#else

#define OS_CPU_EXT extern

#endif

OS_CPU_GLOBALS and OS_CPU_EXT allow us to declare global variables that are specific to this port.

This project doesn’t have any global variables associated with the port.

Listing 4-1, os_cpu.h, Data Types

typedef unsigned char BOOLEAN;

typedef unsigned char INT8U;

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

 11

typedef signed char INT8S;

typedef unsigned short INT16U; /* (1) */

typedef signed short INT16S;

typedef unsigned int INT32U;

typedef signed int INT32S;

typedef float FP32; /* (2) */

typedef double FP64;

typedef unsigned int OS_STK; /* (3) */

typedef unsigned int volatile OS_CPU_SR; /* (4) */

L4-1(1) If you were to consult the GNU compiler documentation, you would find that a short is

16 bits and an int is 32 bits.

L4-1(2) Floating-point data types are included even though µC/OS-II doesn’t make use of

floating-point numbers.

L4-1(3) A stack entry for the MicroBlaze processor is always 32 bits wide, and OS_STK is

declared accordingly. All task stacks must be declared using OS_STK as their data type.

L4-1(4) The status register (the MSR) on the MicroBlaze processor is 32 bits wide. The

OS_CPU_SR data type is used when OS_CRITICAL_METHOD #3 is used (described

below). In fact, this port only supports OS_CRITICAL_METHOD #3 because it’s the

preferred method for µC/OS-II ports.

Listing 4-1, os_cpu.h, OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL()

#define OS_CRITICAL_METHOD 3

#define OS_ENTER_CRITICAL() cpu_sr = OS_CPU_SR_Save();

#define OS_EXIT_CRITICAL() OS_CPU_SR_Restore(cpu_sr);

µC/OS-II, as with all real-time kernels, needs to disable interrupts in order to access critical sections of

code and re-enable interrupts when done. µC/OS-II defines two macros to disable and enable interrupts:

OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL(), respectively. µC/OS-II defines three ways to

implement these macros, but a µC/OS-II port only needs to use one of the three methods. MicroC/OS-II,

The Real-Time Kernel, 2
nd

 Edition (see References, at the end of this document) describes the three
different methods. The appropriate method for a given project depends on the processor and compiler.
The preferred method is OS_CRITICAL_METHOD #3, which is used for the MicroBlaze port

OS_CRITICAL_METHOD #3 implements OS_ENTER_CRITICAL() by calling a function that will save the

status register of the CPU in a variable. OS_EXIT_CRITICAL() invokes another function to restore the

status register from the variable. The code for these two functions is declared in os_cpu_a.s, which is

described in subsequent sections of this document.

Listing 4-1, os_cpu.h, Stack Growth

#define OS_STK_GROWTH 1

The stacks on the MicroBlaze grow from high memory to low memory. This convention is indicated to

µC/OS-II by setting OS_STK_GROWTH to 1.

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

12

Listing 4-1, os_cpu.h, Task-Level Context Switch

#define OS_TASK_SW() OSCtxSw()

Task-level context switches are performed when µC/OS-II invokes the macro OS_TASK_SW(). Because

context switching is processor-specific, OS_TASK_SW() needs to execute an assembly language function

called OSCtxSw(), which is declared in os_cpu_a.s. When this function is invoked, the processor

stores the return address of the caller in R15. To return to the caller, OSCtxSw() (or, as we will see later,

OSIntCtxSw()) needs to execute the following instructions:

RTSD R15,8 ; Return from sub-routine and add 8 to the return address.
OR R0,R0,R0 ; NO-OP

8 is added to the return address because the processor actually saves the address of the

Branch-and-Link instruction, as shown below (i.e. PC+0). In addition, there is a delay slot after the branch

instruction, so the return instruction should in fact be at PC+8.

PC+0 BRLID R15,OSCtxSw ; Call OSCtxSw (PC is saved in R15)
PC+4 OR R0,R0,R0 ; NO-OP

PC+8 <<<< Should return HERE from the sub-routine >>>>

Listing 4-1, os_cpu.h, Function Prototypes

OS_CPU_SR OS_CPU_SR_Save(void);

void OS_CPU_SR_Restore(OS_CPU_SR);

void OS_CPU_ISR(void);

These functions are prototyped in os_cpu.h but are declared in os_cpu_a.s.

OS_CPU_SR_Save() saves the state of the MSR into a local variable and then disables interrupts. The

saved MSR is returned to the caller. OS_CPU_SR_Restore() simply restores the MSR register with the

value of the argument passed. This restores the interrupt status to the value saved prior to the call to
OS_CPU_SR_Save().

OS_CPU_SR_Save() and OS_CPU_SR_Restore() are ‘mapped’ to the macro functions

OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL(), respectively. OS_ENTER_CRITICAL() and

OS_EXIT_CRITICAL() are always used in pairs, as shown below:

OS_CPU_SR cpu_sr;

OS_ENTER_CRITICAL();

/* Code executing in a critical section */

OS_EXIT_CRITICAL();

When expanded by the compiler, the code from the macros appears as follows:

OS_CPU_SR cpu_sr;

os_cpu_sr = OS_CPU_SR_Save(); /* Expansion of OS_ENTER_CRITICAL() */

/* Code executing in a critical section */

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

 13

OS_CPU_SR_Restore(cpu_sr); /* Expansion of OS_EXIT_CRITICAL() */

OS_CPU_ISR(), which is described in a later section of this document, is the entry point for all CPU

interrupts.

4.02 os_cpu_c.c

A µC/OS-II port requires that you write ten fairly simple C functions:

OSInitHookBegin()
OSInitHookEnd()
OSTaskCreateHook()
OSTaskDelHook()
OSTaskIdleHook()
OSTaskStatHook()

OSTaskStkInit() Described in this section.
OSTaskSwHook()
OSTCBInitHook()
OSTimeTickHook()

µC/OS-II really only requires OSTaskStkInit(). The other functions MUST be declared but can be

empty.

OSTaskIdleHook() is called when µC/OS-II has no other task to run. As described in MicroC/OS-II,

The Real-Time Kernel, 2
nd

 Edition (see References, at the end of this document), OSTaskIdleHook()

can be used to place the CPU in a low power mode.

To use the µC/OS-II required functions declared in this file, the MISCELLANEOUS parameter

OS_CPU_HOOKS_EN should be set to 1 using your project’s Board Support Package Settings. If

OS_CPU_HOOKS_EN is set to 0, then you must declare the functions listed above in another file. You

should thus note that these functions MUST always be declared even though they might not contain any
code.

Listing 4-3 shows the code for OSTaskStkInit(). You should note that we initialized the CPU registers

to values corresponding to their register number. This makes it convenient to find the registers on the
stack when you use a debugger. Also, R16 is not saved onto the stack since it’s used by the debugger

and we don’t want to interfere with the debugger during context switching. The GNU compiler also uses
two data ‘anchors’: _SDA_BASE_ occupies R13 and _SDA2_BASE_ is in R2.

As per the MicroBlaze register usage convention, the first argument of a function is passed in R5. Recall

that a task is declared as shown in Listing 4-2. The task receives an optional argument, p_arg. That’s

why p_arg is passed in R5 when the task’s stack is created by OSTaskStkInit() (see Listing 4-3).

Listing 4-2, µC/µC/µC/µC/OSOSOSOS----IIIIIIII Task

void MyTask (void *p_arg)

{

 /* Do something with ‘p_arg’, optional */

 while (1) {

 /* Task body */

 }

}

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

14

Listing 4-3, os_cpu_c.c, OSTaskStkInit()

OS_STK *OSTaskStkInit (void (*task)(void *pd), void *p_arg, OS_STK *ptos, INT16U opt)

{

 INT32U *pstk;

 INT32U msr_val;

 __asm__ __volatile__ (“mfs\t%0,rmsr\n” : “=r”(msr_val));

 msr_val &= 0x000000A0; /* Ensure that the status of the caches is not changed */

 opt = opt; /* 'opt' is not used, prevent warning */

 pstk = (INT32U *)ptos; /* Load stack pointer */

 pstk--; /* Make sure we point to free entry ... */

 pstk--; /* .. compiler uses top-of-stack so free an extra one. */

 pstk-- = (INT32U)0x31313131; / R31 */

 pstk-- = (INT32U)0x30303030; / R30 */

 pstk-- = (INT32U)0x29292929; / R29 */

 pstk-- = (INT32U)0x28282828; / R28 */

 pstk-- = (INT32U)0x27272727; / R27 */

 pstk-- = (INT32U)0x26262626; / R26 */

 pstk-- = (INT32U)0x25252525; / R25 */

 pstk-- = (INT32U)0x24242424; / R24 */

 pstk-- = (INT32U)0x23232323; / R23 */

 pstk-- = (INT32U)0x22222222; / R22 */

 pstk-- = (INT32U)0x21212121; / R21 */

 pstk-- = (INT32U)0x20202020; / R20 */

 pstk-- = (INT32U)0x19191919; / R19 */

 pstk-- = (INT32U)0x18181818; / R18 */

 pstk-- = (INT32U)0x17171717; / R17 */

 pstk-- = (INT32U)task - 8; / R15 = task return address (assuming function call) */

 pstk-- = (INT32U)task; / R14 = task (Interrupt return address) */

 pstk-- = (INT32U)&_SDA_BASE_; / R13 */

 pstk-- = (INT32U)0x12121212; / R12 */

 pstk-- = (INT32U)0x11111111; / R11 */

 pstk-- = (INT32U)0x10101010; / R10 */

 pstk-- = (INT32U)0x09090909; / R09 */

 pstk-- = (INT32U)0x08080808; / R08 */

 pstk-- = (INT32U)0x07070707; / R07 */

 pstk-- = (INT32U)0x06060606; / R06 */

 pstk-- = (INT32U)p_arg; / R05 */

 pstk-- = (INT32U)0x04040404; / R04 */

 pstk-- = (INT32U)0x03030303; / R03 */

 pstk-- = (INT32U)&_SDA2_BASE_; / R02 */

 pstk = msr_val | 0x00000002; / MSR with interrupts enabled */

 return ((OS_STK *)pstk); /* Return new top of stack */

}

Figure 4-1 shows how the stack frame is initialized for each task when it’s created.

When the task is created, the final value of stk is placed in the OS_TCB of that task. Note that the MSR is

the ‘last’ entry placed on the stack and it’s actually located at the top of the stack. stk thus points to the

LAST element placed onto the stack.

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

 15

Figure 4-1, The Stack Frame for Each Task

4.03 os_cpu_a.s

A µC/OS-II port requires that you write four fairly simple assembly language functions. These functions

are needed because you normally cannot save/restore registers from C functions. The four functions are:

OSStartHighRdy()
OSCtxSw()
OSIntCtxSw()
OS_CPU_ISR()

4.03.01 os_cpu_a.s, OSStartHighRdy()

OSTCBStkPtr

R2 (_SDA2_BASE)

R3

R4

R5 (p_arg)

R6

R7

R8

R9

R10

R11

R12

R13 (_SDA_BASE_)

R14 (task)

R15 (task – 8)

R17

R18

R20

R21

R22

R23

R24

R25

R26

R27

R28

R29

R30

R31

MSR

OS_TCB

Low Memory

High Memory

stk

ptos

R19

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

16

OSStartHighRdy() is shown in Listing 4-4. This function is called by OSStart(), which is declared in

os_core.c, to start running the highest priority task that was created before calling OSStart().

OSStart() sets OSTCBHighRdy to point to the OS_TCB of the highest priority task.

Listing 4-4, OSStartHighRdy()

OSStartHighRdy:

 BRLID r15, OSTaskSwHook /* (1) */

 AND r0, r0, r0

 OR r3, r3, r0 /* (2) */

 ADDIK r3, r0, 1

 SBI r3, r0, OSRunning

 LWI r3, r0, OSTCBHighRdy /* (3) */

 LW r1, r0, r3

 LWI r31, r1, STK_OFFSET_R31 /* (4) */

 LWI r30, r1, STK_OFFSET_R30

 LWI r29, r1, STK_OFFSET_R29

 LWI r28, r1, STK_OFFSET_R28

 LWI r27, r1, STK_OFFSET_R27

 LWI r26, r1, STK_OFFSET_R26

 LWI r25, r1, STK_OFFSET_R25

 LWI r24, r1, STK_OFFSET_R24

 LWI r23, r1, STK_OFFSET_R23

 LWI r22, r1, STK_OFFSET_R22

 LWI r21, r1, STK_OFFSET_R21

 LWI r20, r1, STK_OFFSET_R20

 LWI r19, r1, STK_OFFSET_R19

 LWI r18, r1, STK_OFFSET_R18

 LWI r17, r1, STK_OFFSET_R17

 LWI r15, r1, STK_OFFSET_R15

 LWI r14, r1, STK_OFFSET_R14 /* (5) */

 LWI r13, r1, STK_OFFSET_R13

 LWI r12, r1, STK_OFFSET_R12

 LWI r11, r1, STK_OFFSET_R11

 LWI r10, r1, STK_OFFSET_R10

 LWI r9, r1, STK_OFFSET_R09

 LWI r8, r1, STK_OFFSET_R08

 LWI r7, r1, STK_OFFSET_R07

 LWI r6, r1, STK_OFFSET_R06

 LWI r5, r1, STK_OFFSET_R05 /* (6) */

 LWI r4, r1, STK_OFFSET_R04

 LWI r2, r1, STK_OFFSET_R02

 LWI r3, r1, STK_OFFSET_RMSR /* (7) */

 ANDNI r3, r3, CPU_IE_BIT

 MTS RMSR, r3

 LWI r3, r1, STK_OFFSET_R03

 ADDIK r1, r1, STK_CTX_SIZE /* (8) */

 RTID r14, 0 /* (9) */

 AND r0, r0, r0 /* (10) */

L4-4(1) A call is made to OSTaskSwHook(), a user-defined function that can provide additional

operations to be performed every time there is a context switch.

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

 17

L4-4(2) The µC/OS-II flag OSRunning is set to TRUE, indicating that µC/OS-II will be running

once the first task is started.

L4-4(3) We then get the pointer to the task’s top-of-stack (was stored by OSTaskCreate() or

OSTaskCreateExt()). See Figure 4-1 (stk is stored in the OS_TCB of the created

task).

L4-4(4) We then load all the registers from the task’s stack (except R0 and R1). R0 is never

stored because it always contains 0x0000,0000. R1 is actually the Stack Pointer (SP),

which was stored in the OS_TCB of the task. Note that we used STK_OFFSET_??? labels

instead of hard-coding numbers for stack offsets. This allows us to easily change where
registers are placed on the stack frame. STK_OFFSET_??? labels are declared at the

beginning of os_cpu_a.s.

L4-4(5) When the task is created, OSTaskCreate() or OSTaskCreateExt() places the

starting address of the task in R14.

L4-4(6) When the task is created, OSTaskCreate() or OSTaskCreateExt() places the

argument to pass to the task in R5.

L4-4(7) The last value that was added to the stack by OSTaskStkInit() is placed in the MSR.

Subsequently, R3, which was used as a temporary location for this stack entry, is loaded

with the appropriate data.

L4-4(8) The stack frame is then cleaned up by moving the stack pointer up by the number of

bytes used to store all the registers. We add this number to the stack pointer since those
registers are now in the CPU.

L4-4(9) We finally perform a return from interrupt, which will cause the MicroBlaze to start

executing the task’s code. This instruction ALSO sets the IE bit in the MSR register to 1,

enabling interrupts for the task.

L4-4(10) A NO-OP instruction is inserted to fill the delay slot.

4.03.02 os_cpu_a.s, OSCtxSw()

A task-level context switch occurs when a task is no longer able to run. For example, if your code calls
OSTimeDly(10), then the current task needs to be suspended until 10 clock ticks expire. Since the task

can no longer run, µC/OS-II needs to find the next most important task that is ready to run and resume

execution of that task. The flow of code is as follows:

Your task calls OSTimeDly(10);

 OSTimeDly() calls OS_Sched();

 OS_Sched() disables Interrupts;

 OS_Sched() finds the highest priority task that’s ready to run;

 OS_Sched() calls OSCtxSw();

 OSCtxSw() performs the context switch;

 Execution resumes in the new task;

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

18

OSCtxSw() simply consists of saving the CPU registers on the stack of the task to suspend and restoring

the CPU registers of the new task from its stack. The pseudocode for this is shown below. This code
also relates to Figure 4-2:

 Save the CPU registers onto the old task’s stack; /* (1) */

 OSTCBCur->OSTCBStkPtr = SP; /* (2) */

 OSTaskSwHook(); /* (3) */

 OSPrioCur = OSPrioHighRdy; /* (4) */

 OSTCBCur = OSTCBHighRdy; /* (5) */

 SP = OSTCBHighRdy->OSTCBStkPtr; /* (6) */

 Restore the CPU registers from the new task’s stack; /* (7) */

The code to perform a task-level context switch is shown in Listing 4-5. OSCtxSw() is called when a

higher priority task is made ready to run by another task, or when the current task can no longer execute
(it calls OSTimeDly(), OSSemPend() and the semaphore is not available, etc.). Figure 4-2 also shows

the process graphically.

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

 19

Figure 4-2, OSCtxSw(), Task-Level Context Switch

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15 (task - 8)

R17

R18

R19

R20

R21

R22

R23

R24

R25

R26

R27

R28

R29

R30

R31

MSR (IE == 0)

OSTCBStkPtr

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14 (task)

R15 (task – 8)

R17

R18

R19

R20

R21

R22

R23

R24

R25

R26

R27

R28

R29

R30

R31

MSR

OSTCBStkPtr

MSR

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

R17

R18

R19

R20

R21

R22

R23

R24

R25

R26

R27

R28

R29

R30

R31

R0

R1

PC

(1)

R1=R1-0x78

(4)

(5) (6)

(7) (2)

(12) or (16)

(11)
or

(18)

MicroBlaze

CPU

New Task

Stack

Old Task

Stack

(14) or (19)

R1=R1+0x78

High

Memory

(3)

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

20

Listing 4-5, OSCtxSw()

OSCtxSw:

 ADDIK r1, r1, -STK_CTX_SIZE /* (1) */

 SWI r2, r1, STK_OFFSET_R02 /* (2) */

 SWI r3, r1, STK_OFFSET_R03

 SWI r4, r1, STK_OFFSET_R04

 SWI r5, r1, STK_OFFSET_R05

 SWI r6, r1, STK_OFFSET_R06

 SWI r7, r1, STK_OFFSET_R07

 SWI r8, r1, STK_OFFSET_R08

 SWI r9, r1, STK_OFFSET_R09

 SWI r10, r1, STK_OFFSET_R10

 SWI r11, r1, STK_OFFSET_R11

 SWI r12, r1, STK_OFFSET_R12

 SWI r13, r1, STK_OFFSET_R13

 SWI r14, r1, STK_OFFSET_R14

 SWI r15, r1, STK_OFFSET_R15 /* (3) */

 SWI r17, r1, STK_OFFSET_R17

 SWI r18, r1, STK_OFFSET_R18

 SWI r19, r1, STK_OFFSET_R19

 SWI r20, r1, STK_OFFSET_R20

 SWI r21, r1, STK_OFFSET_R21

 SWI r22, r1, STK_OFFSET_R22

 SWI r23, r1, STK_OFFSET_R23

 SWI r24, r1, STK_OFFSET_R24

 SWI r25, r1, STK_OFFSET_R25

 SWI r26, r1, STK_OFFSET_R26

 SWI r27, r1, STK_OFFSET_R27

 SWI r28, r1, STK_OFFSET_R28

 SWI r29, r1, STK_OFFSET_R29

 SWI r30, r1, STK_OFFSET_R30

 SWI r31, r1, STK_OFFSET_R31

 MFS r3, RMSR /* (4) */

 SWI r3, r1, STK_OFFSET_RMSR

 LWI r3, r0, OSTCBCur /* (5) */

 SW r1, r0, r3

 BRLID r15, OSTaskSwHook

 AND r0, r0, r0

 LBUI r3, r0, OSPrioHighRdy

 SBI r3, r0, OSPrioCur

 LWI r3, r0, OSTCBHighRdy

 SWI r3, r0, OSTCBCur

 LW r1, r0, r3 /* (6) */

 LWI r31, r1, STK_OFFSET_R31 /* (7) */

 LWI r30, r1, STK_OFFSET_R30

 LWI r29, r1, STK_OFFSET_R29

 LWI r28, r1, STK_OFFSET_R28

 LWI r27, r1, STK_OFFSET_R27

 LWI r26, r1, STK_OFFSET_R26

 LWI r25, r1, STK_OFFSET_R25

 LWI r24, r1, STK_OFFSET_R24

 LWI r23, r1, STK_OFFSET_R23

 LWI r22, r1, STK_OFFSET_R22

 LWI r21, r1, STK_OFFSET_R21

 LWI r20, r1, STK_OFFSET_R20

 LWI r19, r1, STK_OFFSET_R19

 LWI r18, r1, STK_OFFSET_R18

 LWI r17, r1, STK_OFFSET_R17

 LWI r15, r1, STK_OFFSET_R15

 LWI r14, r1, STK_OFFSET_R14

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

 21

 LWI r13, r1, STK_OFFSET_R13

 LWI r12, r1, STK_OFFSET_R12

 LWI r11, r1, STK_OFFSET_R11

 LWI r10, r1, STK_OFFSET_R10

 LWI r9, r1, STK_OFFSET_R09

 LWI r8, r1, STK_OFFSET_R08

 LWI r7, r1, STK_OFFSET_R07

 LWI r6, r1, STK_OFFSET_R06

 LWI r5, r1, STK_OFFSET_R05

 LWI r4, r1, STK_OFFSET_R04

 LWI r2, r1, STK_OFFSET_R02

 LWI r3, r1, STK_OFFSET_RMSR /* (8) */

 ANDI r3, r3, CPU_IE_BIT /* (9) */

 BNEI r3, OSCtxSw_SavedByISR /* (10) */

 LWI r3, r1, STK_OFFSET_RMSR /* (11) */

 MTS RMSR,r3 /* (12) */

 LWI r3, r1, STK_OFFSET_R03 /* (13) */

 ADDIK r1, r1, STK_CTX_SIZE /* (14) */

 RTSD r15, 8 /* (15) */

 AND r0, r0, r0

OSCtxSw_SavedByISR:

 LWI r3, r1, STK_OFFSET_RMSR /* (16) */

 ANDNI r3, r3, CPU_IE_BIT /* (17) */

 MTS RMSR,r3

 LWI r3, r1, STK_OFFSET_R03 /* (18) */

 ADDIK r1, r1, STK_CTX_SIZE /* (19) */

 RTID r14, 0 /* (20) */

 AND r0, r0, r0

L4-5(1) The stack pointer (R1) is adjusted to make room on the current task’s stack to save the

context of the current task. This is done by subtracting 0x78 (i.e. STK_CTX_SIZE) from

R1.

L4-5(2) The CPU registers are saved onto the current task’s stack. Note that R0, R1, and R16

are not saved. R0 is not saved because it cannot be restored since it always contains the

value 0x0000,0000. R1 is the stack pointer and will be saved in the task’s OS_TCB.

R16 is not saved because it’s reserved for use by debuggers, as per the MicroBlaze ABI

(Application Binary Interface).

L4-5(3) Because OSCtxSw() was called using a branch-and-link instruction, R15 contains the

task’s return address - 8.

L4-5(4) We then save the contents of the MSR. You should note that the IE bit of the MSR is

cleared (interrupts disabled) because interrupts are disabled by the scheduler before
calling OSCtxSw().

L4-5(5) The stack pointer is then saved onto the current task’s OS_TCB.

L4-5(6) The stack pointer of the new task is retrieved from that task’s OS_TCB.

L4-5(7) All of the CPU registers (except R3) are restored from the new task’s stack. R3 is needed

as a scratchpad register to recover the MSR (see below).

L4-5(8) The MSR of the new task is restored from the stack.

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

22

L4-5(9) At this point, we check to see whether the stack frame of the task to resume was saved
by OSCtxSw() (the IE bit in the MSR would be 0) or by an ISR (the IE bit would be set by

OS_CPU_ISR(), which is described later).

L4-5(10) The branch is taken if the stack frame was saved by OS_CPU_ISR().

 Context to restore was saved by OSCtxSw()

L4-5(11) The MSR of the new task is restored from the stack.

L4-5(12) Since the IE bit is 0, we will return to OSCtxSw() with interrupts disabled.

L4-5(13) R3 is restored since it was used as a scratchpad register.

L4-5(14) The stack frame is cleaned up. This is done by adding 0x78 (i.e. STK_CTX_SIZE) bytes

to the stack pointer (i.e. R1).

L4-5(15) We finally execute a return from sub-routine instruction, causing the MicroBlaze to return

to the task that was suspended. We use R15 because we are returning to a task for

which the context was saved using OSCtxSw().

 Context to restore was saved by OS_CPU_ISR()

L4-5(16) We place the contents of the MSR in R3.

L4-5(17) Note that at this point, the processor WOULD accept interrupts if the MSR was restored

from the stack (IE bit in the copy of the MSR on the stack is set since the context of the

task to resume was saved by an ISR). Therefore, we clear the IE bit (disabling

interrupts) before moving the value into the CPU’s MSR register. The IE bit will be

correctly set upon returning from the interrupt, as described below.

L4-5(18) R3 is restored since it was used as a scratchpad register.

L4-5(19) The stack frame is cleaned up. This is done by adding 0x78 (i.e. STK_CTX_SIZE) bytes

to the stack pointer (i.e. R1).

L4-5(20) A return from interrupt instruction is executed. This forces the CPU to resume the

interrupted task. Note that the RTID instruction also sets the IE bit back to 1, enabling

interrupts.

4.03.03 Handling Interrupts

The MicroBlaze architecture offers a single interrupt vector for all interrupts. Through polling, software
needs to determine the source of the interrupt. If an interrupt occurs and the IE bit in the MSR is set, the

processor completes the current instruction and then vectors (i.e. jumps) to address 0x0000,0010 (note

that the comma separating the hexadecimal number DOES NOT represent a fraction but is used to make
the 32-bit number easier to read). Space is provided for two 32-bit instructions at this location, allowing
code to jump to any location in the 32-bit MicroBlaze address space.

The startup files that are automatically linked with applications created in XPS initialize address
0x0000,0010 with a branch to an interrupt handler. To ensure that this branch ultimately leads to

µC/OS-II’s interrupt handler, you simply need to follow the procedure described in section 6.00 for

selecting µC/OS-II as your operating system. Once this selection has been made, interrupts will be

processed by OS_CPU_ISR(), the pseudocode for which is provided in Listing 4-6.

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

 23

Listing 4-6, Pseudocode for OS_CPU_ISR()

OS_CPU_ISR()

 Save ALL registers; (1)

 if (OSIntNesting == 0) { (2)

 OSTCBCur->OSTCBStkPtr = SP; (3)

 }

 OSIntNesting++; (4)

 BSP_IntHandler(); (5)

 OSIntExit(); (6)

 Restore ALL registers; (7)

 Return from Interrupt; (8)

L4-6(1) All of the CPU registers are saved onto the interrupted task’s stack. OS_CPU_ISR()

saves registers in a manner that creates a stack frame identical to that made by
OSTaskStkInit() in os_cpu_c.c. Note that before saving the MSR onto the

interrupted task’s stack, we set the IE bit of the MSR value that we will save on the stack.

When the interrupted task eventually resumes, interrupts will be enabled.

L4-6(2)-(3) We then check to see if this is the first nested ISR by comparing OSIntNesting to zero.

If this is the first nested ISR then we need to save the task’s stack pointer onto the task
control block (TCB) of the interrupted task. It’s in fact quite unlikely that interrupts will be

nested on the MicroBlaze because of the way we need to determine the interrupt source
(i.e. by polling each interrupting device). It would be acceptable to simply save the stack
pointer of the interrupted task into its TCB all the time. However, we felt more comfortable

doing this the normal µC/OS-II way. It is important to save the SP into the TCB because

(as we will see shortly), we may not actually return to the interrupted task, but instead
context switch to a more important task when OSIntExit() executes.

L4-6(4) We then increment the interrupt nesting counter. OSIntNesting needs to be

incremented by the ISR because OSIntExit() checks the value of this counter to

determine whether it will return to task level code or the next nested ISR. As we
mentioned above, it’s unlikely that ISRs will be nested, so OSIntExit() should always

return to a task.

L4-6(5) We then call a C-level interrupt handler called BSP_IntHandler(). This function

should be located in bsp.c. The version of BSP_IntHandler() included with this

document is described further in section 5.02.

You might notice that it’s possible for multiple interrupts to be serviced by
BSP_IntHandler() because other interrupts could have been received in the time it

took to get to this point in the ISR. Also, if interrupts are received by MicroBlaze after
BSP_IntHandler() polls all interrupt sources, OS_CPU_ISR() will be re-entered after

we return from interrupt. In other words, we will not be missing any interrupts using this
scheme.

L4-6(6) When we come back from servicing all the interrupting devices, we call the µC/OS-II

interrupt level scheduler, OSIntExit(). OSIntExit() decrements the interrupt

nesting counter and if this counter reaches zero (and it should), OSIntExit()

determines whether a new, more important task has been made ready to run by one or
more interrupts. If so, OSIntExit() will NOT return to the interrupted task but instead

context switch to the new, more important task.

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

24

L4-6(7)-(8) If the interrupted task is still the most important task after servicing the interrupt, then
OSIntExit() returns, resulting in a return to that task (blue path in Figure 4-3). If a

more important task has been made ready to run by one or more interrupting devices,
then OSIntExit() resumes the higher priority task (red path in Figure 4-3).

Figure 4-3, Servicing Interrupts with OS_CPU_ISR()

4.03.04 os_cpu_a.s, OS_CPU_ISR()

The actual code to implement OS_CPU_ISR() is shown in Listing 4-7 and follows the pseudocode

presented in the previous section.

Listing 4-7, OS_CPU_ISR()

OS_CPU_ISR:

 ADDIK r1, r1, -STK_CTX_SIZE

 SWI r2, r1, STK_OFFSET_R02

 SWI r3, r1, STK_OFFSET_R03

 SWI r4, r1, STK_OFFSET_R04

 SWI r5, r1, STK_OFFSET_R05

 SWI r6, r1, STK_OFFSET_R06

 SWI r7, r1, STK_OFFSET_R07

 SWI r8, r1, STK_OFFSET_R08

 SWI r9, r1, STK_OFFSET_R09

 SWI r10, r1, STK_OFFSET_R10

 SWI r11, r1, STK_OFFSET_R11

Task Code

Gets

Interrupted

OS_CPU_ISR:
 Save ALL registers; (Set IE to 1 on the stack frame)
 if (OSIntNesting == 0) {
 OSTCBCur->OSTCBStkPtr = SP;
 }
 OSIntNesting++;

 BSP_IntHandler();

 OSIntExit();

 Restore ALL registers;
 Return from Interrupt;

IE=0

BSP_IntHandler()
 Determine source of Interrupt(s);

 Service ALL interrupts!

 Return;

IE=1

Interrupted

Task Code

Resumed

High

Priority

Task

Suspended

High

Priority

Task

Resumed

Task Code
Suspended

IE=1

IE=1

OSIntExit()
 if (Higher priority task Ready)
 Restore ALL registers;
 Return from Interrupt;
 else

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

 25

 SWI r12, r1, STK_OFFSET_R12

 SWI r13, r1, STK_OFFSET_R13

 SWI r14, r1, STK_OFFSET_R14

 SWI r15, r1, STK_OFFSET_R15

 SWI r17, r1, STK_OFFSET_R17

 SWI r18, r1, STK_OFFSET_R18

 SWI r19, r1, STK_OFFSET_R19

 SWI r20, r1, STK_OFFSET_R20

 SWI r21, r1, STK_OFFSET_R21

 SWI r22, r1, STK_OFFSET_R22

 SWI r23, r1, STK_OFFSET_R23

 SWI r24, r1, STK_OFFSET_R24

 SWI r25, r1, STK_OFFSET_R25

 SWI r26, r1, STK_OFFSET_R26

 SWI r27, r1, STK_OFFSET_R27

 SWI r28, r1, STK_OFFSET_R28

 SWI r29, r1, STK_OFFSET_R29

 SWI r30, r1, STK_OFFSET_R30

 SWI r31, r1, STK_OFFSET_R31

 MFS r3, RMSR /* (1) */

 ORI r3, r3, CPU_IE_BIT

 SWI r3, r1, STK_OFFSET_RMSR

 LBUI r3, r0, OSIntNesting

 BNEI r3, OS_CPU_ISR_1

 LWI r3, r0, OSTCBCur

 SW r1, r0, r3

OS_CPU_ISR_1:

 LBUI r3, r0, OSIntNesting

 ADDIK r3, r3, 1

 SBI r3, r0, OSIntNesting

 BRLID r15, BSP_IntHandler

 AND r0, r0, r0

 BRLID r15, OSIntExit

 AND r0, r0, r0

 LWI r31, r1, STK_OFFSET_R31

 LWI r30, r1, STK_OFFSET_R30

 LWI r29, r1, STK_OFFSET_R29

 LWI r28, r1, STK_OFFSET_R28

 LWI r27, r1, STK_OFFSET_R27

 LWI r26, r1, STK_OFFSET_R26

 LWI r25, r1, STK_OFFSET_R25

 LWI r24, r1, STK_OFFSET_R24

 LWI r23, r1, STK_OFFSET_R23

 LWI r22, r1, STK_OFFSET_R22

 LWI r21, r1, STK_OFFSET_R21

 LWI r20, r1, STK_OFFSET_R20

 LWI r19, r1, STK_OFFSET_R19

 LWI r18, r1, STK_OFFSET_R18

 LWI r17, r1, STK_OFFSET_R17

 LWI r15, r1, STK_OFFSET_R15

 LWI r14, r1, STK_OFFSET_R14

 LWI r13, r1, STK_OFFSET_R13

 LWI r12, r1, STK_OFFSET_R12

 LWI r11, r1, STK_OFFSET_R11

 LWI r10, r1, STK_OFFSET_R10

 LWI r9, r1, STK_OFFSET_R09

 LWI r8, r1, STK_OFFSET_R08

 LWI r7, r1, STK_OFFSET_R07

 LWI r6, r1, STK_OFFSET_R06

 LWI r5, r1, STK_OFFSET_R05

 LWI r4, r1, STK_OFFSET_R04

 LWI r2, r1, STK_OFFSET_R02

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

26

 LWI r3, r1, STK_OFFSET_RMSR /* (2) */

 ANDNI r3, r3, CPU_IE_BIT /* (3) */

 MTS RMSR,r3

 LWI r3, r1, STK_OFFSET_R03 /* (4) */

 ADDIK r1, r1, STK_CTX_SIZE /* (5) */

 RTID r14, 0

 AND r0, r0, r0

L4-7(1) You should note a small subtlety in that we set the IE bit to 1 when we save the MSR onto

the interrupted task’s stack. When the interrupt is accepted by MicroBlaze, the IE bit is

cleared to prevent further interrupts. Since OS_CPU_ISR() starts by saving the context

of the interrupted task, we want to save the fact that interrupts need to be enabled when
we eventually return to the interrupted task. Also, this allows us to know that the stack
frame was saved by OS_CPU_ISR(), reminding us to reenable interrupts upon returning

to the interrupted task.

L4-7(2) We restore the MSR from the task’s stack frame into R3, a scratchpad register.

L4-7(3) Before we restore the actual MSR of the CPU, we clear the IE bit to disable interrupts.

This is done to prevent interrupts from occurring before we are ready to resume the
interrupted task.

L4-7(4) The stack frame is cleaned up. This is done by adding 0x78 (i.e. STK_CTX_SIZE) bytes

to the stack pointer (i.e. R1).

L4-7(5) A return from interrupt, which forces the CPU to resume the interrupted task, is executed.

Note that the RTID instruction also sets the IE bit back to 1, which enables interrupts as

soon as we return to the task code.

4.03.05 os_cpu_a.s, OSIntCtxSw()

OSIntCtxSw() is called by OSIntExit() if µC/OS-II determines that there is a more important task to

run than the interrupted task. The code that implements OSIntCtxSw() is shown in Listing 4-8. You

should note that the code is identical to the second half of OSCtxSw(). In fact, if code space is an issue,

the port could be easily modified to have common code for both functions. We decided to replicate the
code here for the sake of clarity.

Listing 4-8, OSIntCtxSw()

OSIntCtxSw:

 BRLID r15, OSTaskSwHook

 AND r0, r0, r0

 LBUI r3, r0, OSPrioHighRdy

 SBI r3, r0, OSPrioCur

 LWI r3, r0, OSTCBHighRdy

 SWI r3, r0, OSTCBCur

 LW r1, r0, r3

 LWI r31, r1, STK_OFFSET_R31

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

 27

 LWI r30, r1, STK_OFFSET_R30

 LWI r29, r1, STK_OFFSET_R29

 LWI r28, r1, STK_OFFSET_R28

 LWI r27, r1, STK_OFFSET_R27

 LWI r26, r1, STK_OFFSET_R26

 LWI r25, r1, STK_OFFSET_R25

 LWI r24, r1, STK_OFFSET_R24

 LWI r23, r1, STK_OFFSET_R23

 LWI r22, r1, STK_OFFSET_R22

 LWI r21, r1, STK_OFFSET_R21

 LWI r20, r1, STK_OFFSET_R20

 LWI r19, r1, STK_OFFSET_R19

 LWI r18, r1, STK_OFFSET_R18

 LWI r17, r1, STK_OFFSET_R17

 LWI r15, r1, STK_OFFSET_R15

 LWI r14, r1, STK_OFFSET_R14

 LWI r13, r1, STK_OFFSET_R13

 LWI r12, r1, STK_OFFSET_R12

 LWI r11, r1, STK_OFFSET_R11

 LWI r10, r1, STK_OFFSET_R10

 LWI r9, r1, STK_OFFSET_R09

 LWI r8, r1, STK_OFFSET_R08

 LWI r7, r1, STK_OFFSET_R07

 LWI r6, r1, STK_OFFSET_R06

 LWI r5, r1, STK_OFFSET_R05

 LWI r4, r1, STK_OFFSET_R04

 LWI r2, r1, STK_OFFSET_R02

 LWI r3, r1, STK_OFFSET_RMSR

 ANDI r3, r3, CPU_IE_BIT

 BNEI r3, OSIntCtxSw_SavedByISR

 LWI r3, r1, STK_OFFSET_RMSR

 MTS RMSR,r3

 LWI r3, r1, STK_OFFSET_R03

 ADDIK r1, r1, STK_CTX_SIZE

 RTSD r15, 8

 AND r0, r0, r0

OSIntCtxSw_SavedByISR:

 LWI r3, r1, STK_OFFSET_RMSR

 ANDNI r3, r3, CPU_IE_BIT

 MTS RMSR,r3

 LWI r3, r1, STK_OFFSET_R03

 ADDIK r1, r1, STK_CTX_SIZE

 RTID r14, 0

 AND r0, r0, r0

4.03.06 os_cpu_a.s, OS_CPU_SR_Save()

OS_CPU_SR_Save() is responsible for saving the MSR and disabling interrupts, as per the requirements

of OS_CRITICAL_METHOD #3. When this function returns, R3 contains the state of the MSR prior to

disabling interrupts. The µC/OS-II MicroBlaze port actually provides two implementations of

OS_CPU_SR_Save(), the simpler of which is shown in Listing 4-9. Although this version of the function is

more concise, it utilizes the MSRCLR instruction, which is not recognized by all MicroBlaze processors.

Thus, a second, slightly larger version of OS_CPU_SR_Save() is also provided. This version can be seen

in Listing 4-10. When your application is built, the Tcl file provided with the µC/OS-II MicroBlaze port

actually decides which version of the function should be used.

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

28

Listing 4-9, OS_CPU_SR_Save()

OS_CPU_SR_Save:

 RTSD r15, 8

 MSRCLR r3, CPU_IE_BIT

Listing 4-10, Alternate OS_CPU_SR_Save()

OS_CPU_SR_Save:

 ADDIK r1, r1, -4

 SW r4, r1, r0

 MFS r3, RMSR

 ANDNI r4, r3, CPU_IE_BIT

 MTS RMSR, r4

 LW r4, r1, r0

 ADDIK r1, r1, 4

 AND r0, r0, r0

 AND r0, r0, r0

 AND r0, r0, r0

 RTSD r15, 8

 AND r0, r0, r0

4.03.07 os_cpu_a.s, OS_CPU_SR_Restore()

The code in the listing below implements the function that restores the MSR register for

OS_CRITICAL_METHOD #3. When the function is called, it’s assumed that R5 contains the desired state

of the MSR register.

Listing 4-11, OS_CPU_SR_Restore()

OS_CPU_SR_Restore

 RTSD r15, 8

 MTS rMSR, r5

4.04 os_dbg.c

os_dbg.c is a file that was added in V2.62 to allow Kernel Aware debuggers to extract information about

µC/OS-II and its configuration. Specifically, os_dbg.c contains a number of constants that are placed in

ROM (code space). These constants can be read and displayed by the debugger. This file is not actually
used in the MicroBlaze port since Kernel Awareness is not supported by the debugger.

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

 29

5.00 An Example Application

An example µC/OS-II-based application is included with this document. This application uses a fairly

generic board support package, so you should be able to run it on nearly any MicroBlaze system with little
modification. You may, however, need to make some minor changes to bsp.h, as described below, to

account for differences in peripheral names between various systems.

5.01 bsp.h

bsp.h defines several constants that represent the names of the peripherals in your system. You should

replace the existing definitions with the appropriate names for your system, which can be found in your
project’s xparameters.h file. The constants that you may need to redefine are described below.

 BSP_INTC_DEVICE_ID This constant represents your interrupt controller’s device ID.

 BSP_INTC_TIMER1_ID This is the ID for your timer’s interrupt within the interrupt

 controller.
 BSP_INTC_ADDR This is the base address of your interrupt controller. The board

 support routines expect a Xilinx OPB Interrupt Controller to be
 present in your system.

BSP_TIMER0_ADDR This is the base address of the timer that will provide µC/OS-II’s

tick interrupt. The board support routines assume that a Xilinx
OPB Timer/Counter is used

BSP_TMR_VAL This constant, which is involved in the initialization of the above

mentioned timer, should be defined using OS_TICKS_PER_SEC,

the µC/OS-II configuration constant that normally determines

the frequency of the operating system’s tick interrupts.
Specifically, assuming that XPAR_CPU_CORE_CLOCK_FREQ_HZ

represents the timer’s frequency, BSP_TMR_VAL should be

defined as XPAR_CPU_CORE_CLOCK_FREQ_HZ /

OS_TICKS_PER_SEC.

5.02 bsp.c

bsp.c provides several functions for initializing peripherals and servicing interrupts. One such function is

BSP_IntHandler(), which is invoked by OS_CPU_ISR(), the µC/OS-II interrupt handler described in

sections 4.03.03 and 4.03.04, in order to service interrupts received through your interrupt controller.
bsp.c actually contains two implementations of BSP_IntHandler(), and one of these implementations

utilizes the Xilinx Interrupt Controller core’s Interrupt Vector Register (IVR) to quickly determine

the source of an interrupt. Because the IVR is an optional register, though, the implementation that

consults it is accompanied by another implementation that relies on the Interrupt Status Register

(ISR).

The version of BSP_IntHandler() that utilizes the IVR is shown in Listing 5-1. This version is compiled

with your application by default, and the other version of the function, which is shown in Listing 5-2, is
normally removed from compilation by a #if 0 statement. If your interrupt controller doesn’t include an

IVR, though, you will need to move this statement and the following #endif, placing them around the

version of BSP_IntHandler() that is not compatible with your hardware.

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

30

Listing 5-1, BSP_IntHandler()

void BSP_IntHandler (void)

{

 INT32U int_status;

 INT32U int_mask;

 INT32U int_vector;

 XIntc_Config *CfgPtr;

 XIntc_VectorTableEntry *tbl_ptr;

 CfgPtr = &XIntc_ConfigTable[0];

 int_status = XIntc_mGetIntrStatus(BSP_INTC_ADDR);

 while (int_status != 0) {

 int_vector = *(INT32U *)(BSP_INTC_ADDR + 0x00000018);

 int_mask = 1 << int_vector;

 if (((CfgPtr->AckBeforeService) & int_mask) != 0) {

 XIntc_mAckIntr(BSP_INTC_ADDR, int_mask);

 }

 tbl_ptr = &(CfgPtr->HandlerTable[int_vector]);

 tbl_ptr->Handler(tbl_ptr->CallBackRef);

 if (((CfgPtr->AckBeforeService) & int_mask) == 0) {

 XIntc_mAckIntr(BSP_INTC_ADDR, int_mask);

 }

 int_status = XIntc_mGetIntrStatus(BSP_INTC_ADDR);

 }

}

Listing 5-2, Alternate BSP_IntHandler()

void BSP_IntHandler (void)

{

 Xuint32 IntrStatus;

 Xuint32 IntrMask = 1;

 int IntrNumber;

 XIntc_Config *CfgPtr;

 CfgPtr = &XIntc_ConfigTable[(Xuint32)BSP_INTC_DEVICE_ID];

 IntrStatus = XIntc_mGetIntrStatus(CfgPtr->BaseAddress);

 for (IntrNumber = 0; IntrNumber < XPAR_INTC_MAX_NUM_INTR_INPUTS; IntrNumber++) {

 if (IntrStatus & 1) {

 XIntc_VectorTableEntry *TablePtr;

 if (CfgPtr->AckBeforeService & IntrMask) {

 XIntc_mAckIntr(CfgPtr->BaseAddress, IntrMask);

 }

 TablePtr = &(CfgPtr->HandlerTable[IntrNumber]);

 TablePtr->Handler(TablePtr->CallBackRef);

 if ((CfgPtr->AckBeforeService & IntrMask) == 0) {

 XIntc_mAckIntr(CfgPtr->BaseAddress, IntrMask);

 }

 if (CfgPtr->Options == XIN_SVC_SGL_ISR_OPTION) {

 return;

 }

 }

 IntrMask <<= 1;

 IntrStatus >>= 1;

 if (IntrStatus == 0){

 break;

 }

 }

}

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

 31

5.03 helloworld.c

helloworld.c is a simple application that you can use to verify your µC/OS-II and BSP setup. You

may wish to use this application as a starting point for your own µC/OS-II-based applications on your

MicroBlaze system. The code in helloworld.c is described in Listing 5-3, Listing 5-4, Listing 5-5, and

Listing 5-6.

Listing 5-3, helloworld.c, main()

int main (void)

{

 CPU_INT8U err;

 BSP_IntDisAll(); /* (1) */

 OSInit(); /* (2) */

 OSTaskCreateExt(FirstTask, /* (3) */

 (void *)0,

 &FirstTaskStk[TASK_STK_SIZE – 1],

 TASK1_ID,

 TASK1_PRIO,

 &FirstTaskStk[0]

 TASK_STK_SIZE,

 (void *)0,

 OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR);

 OSTaskNameSet(APP_TASK_FIRST_PRIO, “App Task First”, &err); /* (4) */

 OSStart(); /* (5) */

 return 0; /* (6) */

}

L5-3(1) BSP_IntDisAll(), which is declared in bsp.c, is used to make sure that the interrupt

controller does not allow any interrupts until we are ready.

L5-3(2) OSInit() must be called to initialize µC/OS-II before you actually use any of the other

services (i.e. functions) provided by the operating system.

L5-3(3) OSTaskCreateExt() creates a single application task called FirstTask(). This task will

be described later.

L5-3(4) OSTaskNameSet() provides a means of assigning a name to each task in the application.

Task names can be used during debugging. Names can only be assigned to tasks that have
been created using OSTaskCreateExt().

L5-3(5) OSStart() is called to give control to µC/OS-II and start multitasking. OSStart() finds

the highest priority task of all the tasks created (in this case, it’s AppTaskFirst()) and

starts executing that task. OSStart() never returns.

L5-3(6) Return 0 so that the compiler does not throw any warnings about no valid returns.

Listing 5-4, helloworld.c, FirstTask()

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

32

static void FirstTask (void *p_arg)

{

 p_arg = p_arg;

 BSP_InitIO(); /* (1) */

#if OS_TASK_STAT_EN > 0

 OSStatInit(); /* (2) */

#endif

 AppTaskCreate(); /* (3) */

 while (1) {

 printf(“First task says Hello World\n”); /* (4) */

 OSTimeDlyHMSM(0,0,3,0);

 }

}

L5-4(1) FirstTask() calls BSP_InitIO() to initialize the I/O devices, which in this case consist of

an interrupt controller, a timer/counter, and a GPIO core. The initializations for the interrupt
controller involve enabling the timer interrupt and specifying a handler for this interrupt. The
timer is set up to cause an interrupt at a frequency of OS_TICKS_PER_SEC, a value which

can be adjusted using the Board Support Package Settings dialog box described in the next
section.

L5-4(2) OSStatInit() is called to initialize a statistics task, which will determine the percentage of

CPU time that is being used by your application. OSStatInit() should only be called if

OS_TASK_STAT_EN, which can be set through the Board Support Package Settings dialog

box, has a value of 1. Additionally, OSStatInit() must be called after BSP_InitIO(),

because it depends on the tick interrupt enabled by that function. Further information about
OSStatInit() and the methods that it uses to compute CPU usage can be found in the

µC/OS-II book (see References, at the end of this application note).

L5-4(3) AppTaskCreate () is a separate function to create all the other tasks after the first one.

L5-4(4) In µC/OS-II-based applications, the body of each task is an infinite loop. FirstTask()

simply prints a message within this loop, indicating that everything is running properly.

Listing 5-5, helloworld.c, SecondTask()

static void SecondTask (void *p_arg)

{

 p_arg = p_arg;

 while (1) {

 printf(“Second task says Hello World\n”); /* (1) */

 OSTimeDlyHMSM(0,0,3,0);

 }

}

L5-5(1) In µC/OS-II-based applications, the body of each task is an infinite loop. SecondTask()

simply prints a message within this loop, indicating that everything is running properly.

Listing 5-6, helloworld.c, AppTaskCreate()

static void AppTaskCreate (void)

{

 CPU_INT08U err;

 OSTaskCreateExt(SecondTask, /* (1) */

 (void *)0,

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

 33

 &SecondTaskStk[TASK_STK_SIZE - 1],

 TASK2_ID,

 TASK2_PRIO,

 &SecondTaskStk[0],

 TASK_STK_SIZE,

 (void *)0,

 OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR);

 OSTaskNameSet(TASK1_PRIO, (CPU_INT08U *)"SecondTask", &err);

}

L5-6(1) Task creations after the initial task creation is done in a separate function for readability and
 organization.

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

34

6.00 Configuring µC/µC/µC/µC/OSOSOSOS----IIIIIIII

SDK can be used to edit your µC/OS-II-based applications. Once you have unzipped the zip file included

with this document in the location described in section 4.00, Directories and Files, you may specify

µC/OS-II as the board support package for any project that you create in SDK. This selection can be

made through the New Board Support Package Project dialog box. Figure 6-1 shows the New Board

Support Package Project dialog box, with µC/OS-II selected as the platform type.

Figure 6-1, Selecting µC/µC/µC/µC/OSOSOSOS----IIIIIIII in SDK

Once you have specified your package type, you can use the Board Support Package Settings dialog

box to configure µC/OS-II for your application. This page allows you to select values for all of the

constants defined in the µC/OS-II configuration file, os_cfg.h. This file, which is automatically

generated by the tools that SDK invokes, is described in detail in MicroC/OS-II, The Real-Time Kernel,

2nd Edition (see References, at the end of this document).

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

 35

In addition to providing a means of assigning values to µC/OS-II configuration constants, the uC-OSII

page allows you to specify the location of your µC/OS-II source files. If µC/OS-II is selected as your

operating system, these files should be located in the folders described in section 4.00, Directories and
Files. If you did not place the files in these locations, however, you will need to use the FILE_LOCATION
parameters, which can be seen in Figure 6-2, to specify the location of the files. You should also be

aware of the fact that if you have not purchased µC/Probe, and, consequently, you do not have

µC/Probe source files, you should select a value of 0 for the uC-Probe parameters PROBE_EN, and

PROBE_OS_EN so these files will be ignored.

Figure 6-2, Modifying the Default File Locations

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

36

7.00 Running the Example Application

After you have made any needed changes to the BSP files, you can use the included sample application
to check that these files are correctly accessing your hardware. First, however, you should make sure that

you have completed the steps listed in section 3.00, Using the µC/OS-II MicroBlaze Port. After these

steps have been taken, you should create a new project on top of your µC/OS-II platform by creating a

new Xilinx C Project, and then creating the uC_OS-II Hello World application. You then have the option

of creating the µC/OS-II BSP along with the application or choose the BSP as an exsisting one if it has

already been created. After the application is created, the entry for your software project in the projects tab
of SDK should resemble that shown in Figure 7-1.

Figure 7-1, Example Application

Once µC/OS-II has been chosen as your BSP, you should be able to build and run the example

application. This process is somewhat project-specific, so you should follow the steps that you normally
take to download a software application. If the application is running correctly, you should see both hello

world messages print out on the stdout peripheral that is designated to the µC/OS-II bsp. By default this

should be your RS232 UART device but it can be changed in the the µC/OS-II board support package

settings. If the messages are not displaying, you may need to look over section 3.00, Using the µC/OS-II

MicroBlaze Port, and make sure that you have taken all the steps needed to use the port. You may also
want to review section 5.01, bsp.h, and verify that the values specified for the constants in that file indeed

match those defined for your system in xparameters.h.

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

 37

 Licensing

µC/OS-II source and object code can be used by accredited Colleges and Universities without requiring a

license, as long as there is no commercial application involved. In other words, no licensing is required if

µC/OS-II is used for educational purposes.

You need to obtain an 'Object Code Distribution License' to embed µC/OS-II in a product that is sold with

the intent to make a profit or if the product is not used for education or 'peaceful' research. For additional
details, contact us at Licensing@Micrium.com or by calling us (see Contacts).

Acknowledgements

We would like to thank the following people for their support in making the µC/OS-II MicroBlaze port

possible:

Xilinx:
Mr. Jim Burnham

Mr. Goran Bilski, the designer of the MicroBlaze.

Memec:
Mr. Jim Beneke who is responsible for Memec’s worldwide Xilinx technical marketing activities.

Mr. Bryan Fletcher who is responsible for Spartan and MicroBlaze marketing programs, general
hardware tools technical support.

Mr. Nasser Poureh who is responsible for Virtex-II Pro and PowerPC marketing programs and
general hardware tools technical support. Mr. Poureh has been especially helpful and patient in
getting us up and running on the Xilinx tools.

Mr. Ron Wright who is responsible for software applications on MicroBlaze and PowerPC and
general software tools technical support.

References

MicroC/OS-II, The Real-Time Kernel, 2

nd
 Edition

Jean J. Labrosse
R&D Technical Books, 2002
ISBN 1-5782-0103-9

Micriµm
µC/µC/µC/µC/OSOSOSOS----IIIIIIII for the Xilinx MicroBlaze

38

Contacts

Micriµm
1290 Weston Road, Suite 306
Weston, FL 33326
USA
+1 954 217 2036
+1 954 217 2037 (FAX)
e-mail: Jean.Labrosse@Micrium.com
WEB: www.Micrium.com

CMP Books, Inc.
1601 W. 23rd St., Suite 200
Lawrence, KS 66046-9950
USA
+1 785 841 1631
+1 785 841 2624 (FAX)
WEB: http://www.rdbooks.com
e-mail: rdorders@rdbooks.com

Xilinx Inc.
2100 Logic Drive
San Jose, CA 95124-3400
USA
+1 408 559 7778
WEB: http://www.Xilinx.com

