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Branch prediction feeds a speculative execution processor core with instructions. Branch mispre-
dictions are inevitable and have negative effects on performance and energy consumption. With
the advent of highly accurate conditional branch predictors, nonconditional branch instructions
are gaining importance.

In this article, we address the prediction of procedure returns. On modern processors, proce-
dure returns are predicted through a return address stack (RAS). The overwhelming majority of
the return mispredictions are due to RAS overflows and/or overwriting the top entries of the RAS
on a mispredicted path. These sources of misprediction were addressed by previously proposed
speculative return address stacks [Jourdan et al. 1996; Skadron et al. 1998]. However, the remain-
ing misprediction rate of these RAS designs is still significant when compared to state-of-the-art
conditional predictors.

We present two low-cost corruption detectors for RAS predictors. They detect RAS overflows and
wrong path corruption with 100% coverage. As a consequence, when such a corruption is detected,
another source can be used for predicting the return. On processors featuring a branch target buffer
(BTB), this BTB can be used as a free backup predictor for predicting returns when corruption is
detected.

Our experiments show that our proposal can be used to improve the behavior of all previously
proposed speculative RASs. For instance, without any specific management of the speculative states
on the RAS, an 8-entry BTB-backed up RAS achieves the same performance level as a state-of-the-
art, but complex, 64-entry self-checkpointing RAS [Jourdan et al. 1996]. Therefore, our proposal
can be used either to improve the performance of the processor or to reduce its hardware complexity.
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1. INTRODUCTION

Processors with speculative execution rely on branch prediction to fetch use-
ful instructions long before the correct branch targets are computed. Different
types of branches exist—conditional, indirect and returns—and each is pre-
dicted using custom techniques. With the advent of highly accurate conditional
branch predictors [Seznec 2005; Seznec and Michaud 2006; Jiménez 2005],
nonconditional branch instructions are gaining importance.

Return addresses in particular are predicted by means of a return address
stack (RAS). A RAS keeps track of pairs of call and return instructions [Kaeli
and Emma 1991; Webb 1988]. The rationale is that a procedure may be called
from multiple sites in a program. However, each time a return instruction is
executed, it matches with one particular call instruction. Thus, a call instruction
pushes a return target on a RAS, and the corresponding return instruction pops
its predicted target off the stack. The RAS is typically implemented as a circular
buffer to store return addresses and a top-of-stack pointer (TOS) pointing to the
current top of the stack [Skadron et al. 1998].

In theory, a RAS can predict return targets with a 100% accuracy, were it
not for two phenomena. First, the RAS may be too small to hold the entire call
stack. When the RAS overflows, the TOS pointer wraps around and overwrites
older RAS entries. Although the next few returns are predicted correctly, mis-
predictions will occur when the TOS wraps back to the overwritten entries.
A second source of mispredictions results from speculative execution [Jourdan
et al. 1996; Skadron et al. 1998]. The RAS must be updated for speculatively
fetched instructions. A speculatively fetched call pushes a return target on the
RAS to allow its corresponding return to pick it up. When a misprediction is
detected, the call instruction may be squashed, leaving the wrong return target
on the RAS. As a consequence, one branch misprediction may induce additional
return address mispredictions.

These problems have been studied in the literature, but the proposed solu-
tions increase the RAS design complexity. RAS overflows can only be avoided
by increasing the RAS size, but cycle time constraints set an upper bound to a
practical RAS size. RAS corruption due to speculative execution can be reduced
(e.g., by checkpointing the top RAS entry together with the TOS) [Skadron
et al. 1998], but the other RAS entries remain vulnerable to corruption and are
responsible for a large number of mispredictions [Desmet et al. 2005]. Alter-
natively, the self-checkpointing RAS of Jourdan et al. [1996] avoids corruption
due to speculative execution but requires a considerably larger RAS to avoid
corruption due to overflow.

In this article, we present simple confidence estimators for a RAS, more
precisely corruption detectors. Then, we show that these estimators can be
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used to select an alternate source (i.e., the branch target buffer (BTB) or the
indirect jump predictor which are already present in the microarchitecture)
for return prediction. This allows to improve the return address prediction
accuracy and/or reduce the hardware complexity of the RAS.

The sources of mispredictions on the RAS are well known. Our main con-
tribution is to propose two low-complexity hardware mechanisms that detect
the RAS overflows and the wrong path speculative overwrites of the top en-
tries of the RAS, respectively. These mechanisms have 100% coverage of RAS
corruption. When RAS corruption is detected, the prediction can be computed
by a backup predictor, in our case the BTB, but also possibly the indirect jump
predictor. Thus, the backup predictor is effectively for free and the added design
complexity for the RAS is limited to the corruption detectors.

Our BTB-backup RAS allows to increase the performance of all previously
proposed RAS designs. Our experiments also show that augmenting any RAS
design with a BTB back-up is much more cost-effective than increasing the
size of a state-of-the-art conditional branch predictor. Moreover, when a sim-
ple 8-entry RAS design is augmented with BTB-backup, it reaches the same
performance level as was obtained by a state-of-the-art but complex 64-entry
self-checkpointing RAS [Jourdan et al. 1996]. This complexity reduction could
be leveraged in SMT processors where a RAS predictor is needed for each thread
[Hily and Seznec 1996], and of course in multicores.

In the remainder of this article, we first present our evaluation framework
and motivation for the study. Then, we discuss related work (Section 3), present
the corruption detectors for the RAS (Section 4) and the backup prediction
scheme (Section 5). Then, we evaluate the corruption detectors and the backup
predictor (Section 6). Section 7 concludes this article.

2. EVALUATION FRAMEWORK AND MOTIVATION

2.1 Simulation Framework

The RAS corruption detectors are evaluated in a 4-issue processor model
(Table I). A 96-entry reorder buffer is used. Long instruction sequences may
be speculatively fetched. This may cause significant RAS corruption. The
conditional branch predictor is a 64 KB O-GEHL [Seznec 2005] and in-
direct branches are predicted by a cascaded predictor with room for 256
branch targets [Driesen and Holzle 1998]. The branch misprediction penalty
is 20 cycles. This processor model is implemented in the sim-flex simulator
(http://www.ece.cmu.edu/~simflex/).

2.2 Benchmark Selection and Motivation

Accurate return prediction is a major issue on only a subset of the applications—
applications featuring a significant ratio of procedure calls. This class of appli-
cations is, however, a very large class.

Therefore, as a benchmark set, we select the SPEC CPU2000 integer bench-
marks that execute a significant fraction of return instructions (i.e, 7 out of
12 SPEC CPU2000 integer applications) as well as a selection of the TPC-D
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Table I. Baseline Processor Model

Processor Core
Issue width 4 instructions
ROB, issue queue 96
Load-store queue 64
Dispatch-execute delay 5 cycles

Fetch Unit
Fetch width 4 instructions,

2 branches/cycle
Instruction fetch queue 16 instructions
Fetch-dispatch delay 9 cycles
Cond. branch predictor 64Kbits O-GEHL
Return address stack 32 entries
Branch target buffer 256 sets, 4 ways
Cascaded branch 64 sets, 4 ways
target predictor 8-branch path history

Memory Hierarchy
L1 I/D caches 64KB, 4-way, 64B blocks
L2 unified cache 256KB, 8-way, 64B blocks
L3 unified cache 4MB, 8-way, 64B blocks
Cache latencies 1 (L1), 6 (L2), 20 (L3)
Memory latency 350 cycles

queries. These queries are executed by the postgres v6.3 database engine on
a 100MB B-Tree indexed database. Only a subset of the TPC-D queries are
presented as the other queries behave similar to the presented ones.

The benchmarks are compiled for the Alpha ISA using the native cc compiler
with optimization flags “-fast” and are statically linked. Representative simula-
tion intervals of 500M instructions are determined using SimPoint [Sherwood
et al. 2002].

To point out the importance of accurately predicting returns on these ap-
plications, we summarized the types of control transfers and their respective
prediction accuracies for the baseline processor model with a 32-entry simple
RAS in Table II. On the benchmark set, return instructions constitute 1% to 3%
of the executed instructions. When using a 32-entry simple RAS, return mispre-
dictions constitute an important fraction of all branch mispredictions. For the
whole benchmark suite, return mispredictions constitute 32% of all branch mis-
predictions. Note that if the BTB was used as the return predictor, the number
of return mispredictions would be huge (7.68 misp/KI). Furthermore, we will
see in Section 6 that,when using current state-of-the-art RAS designs [Jourdan
et al. 1996; Skadron et al. 1998] the RAS misprediction rate still represents a
significant part of the overall branch misprediction rate.

3. RELATED WORK

The earliest reference on return address prediction goes back to Webb [Webb
1988] who explicitly linked return addresses to their corresponding call instruc-
tions. Kaeli and Emma improve a branch target predictor with a two-stack
return address predictor [Kaeli and Emma 1991].
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Table II. Characterization of Benchmarks Executing on the Baseline Processor Model

Bench- Conditional Direct Indirect Returns
mark IPC Freq. MPKI Freq. Freq. MPKI Freq. MPKI BTB

crafty 2.25 8.2% 3.42 1.4% 0.2% 0.83 1.0% 1.14 4.56
eon 2.20 4.4% 2.30 2.1% 0.6% 1.30 2.2% 1.46 9.51
gap 1.21 8.8% 0.37 1.3% 1.4% 0.02 1.9% 0.13 12.93
gcc 1.96 11.4% 4.06 1.9% 0.5% 1.29 1.1% 1.03 5.99
parser 1.49 10.9% 4.13 2.5% 0.0% 0.00 1.9% 1.36 6.38
perlbmk 2.59 8.8% 0.66 1.7% 1.1% 1.40 1.8% 0.48 2.26
vortex 2.41 10.1% 0.13 2.9% 0.0% 0.02 1.5% 0.06 8.77
Q1 2.55 9.1% 0.87 3.3% 0.6% 0.12 2.8% 1.36 5.41
Q4 2.22 10.3% 0.42 3.3% 0.5% 0.50 3.0% 1.41 12.71
Q6 2.20 10.3% 0.39 3.2% 0.6% 0.98 3.0% 2.15 10.22
Q16 2.76 14.2% 0.66 3.5% 0.2% 0.00 2.4% 0.32 4.03
Q17 2.15 9.8% 0.80 3.5% 0.4% 0.06 3.2% 1.58 12.21
average 2.05 9.7% 1.56 2.5% 0.5% 0.57 2.1% 1.01 7.68

Instruction frequency is expressed as the percentage of all executed instructions. MPKI is mispredicts per kilo
instruction for the instruction type. Column returns/BTB shows the number of mispredicts when return targets
are predicted by the BTB.

Wrong path misprediction is especially addressed by the self-checkpointing
stack presented by Jourdan et al. [1996]. This RAS design is not sensitive to
corruption by wrong-path instructions, but requires a larger RAS as popped en-
tries remain in the RAS. We will see in Section 6 that this solution, eliminating
wrong-path corruption but increasing overflow corruption, is very effective but
requires a large number of entries (e.g., 128).

Skadron et al. [1998] propose to checkpoint some of the RAS contents along
with the TOS pointer. Clearly, checkpointing the full RAS contents is unfeasi-
ble, but checkpointing only the top RAS entry eliminates most effects of RAS
corruption. However, the noncheckpointed RAS entries remain vulnerable to
corruption. These entries are still responsible for a large number of mispredic-
tions, even for large RAS sizes [Desmet et al. 2005].

Annavaram, Diep, and Shen [2002] analyze a commercial OLTP workload
running on an Oracle database server. This workload has many RAS mispredic-
tions due to frequent context switching and explicit return target manipulation.
As a result, the number of calls and returns differs, and the TOS is misaligned.
This behavior also results from the setjmp/longjmp mechanism in C programs.
These mispredictions cannot be classified as overflow or wrong path corruption.
However, it is important to note that when a misaligned TOS is encountered,
the subsequent returns on the TOS will also be mispredicted until the next call.

Accurate RAS prediction is important to obtain high performance in
pipelined processor, especially when pipelines are deeper [Desmet et al. 2005].

The importance of RAS prediction varies strongly between programs and
may depend on programming practice, programming language, and compiler
optimizations. Programmers can choose to partition their programs in more
or less functions and compilers may be more or less aggressive when inlining
functions. Calder et al. [1994] found that object-oriented programs execute more
function calls and returns than procedural languages, although our analysis
shows a large spectrum of behaviors for C++ programs, ranging from almost
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no function calls to the highest fraction of calls we observed in any benchmark.
Still, many programs execute a high fraction of function calls and returns. In
this study, we restrict our evaluation to those programs.

In practice, processors implement relatively small RASs, ranging from 8
[McNairy and Soltis 2003; Song 1997] to 32 entries [Gwennap 1996].

Several authors have investigated the use of RAS to protect against buffer
overflow attacks. Buffer overflow attacks occur when a program overwrites
return addresses in the software call stack, after which arbitrary malicious code
may be executed. To avoid this, secure RASs have been proposed to maintain
a secure copy of the call stack [McGregor et al. 2003; Xu et al. 2002]. These
secure RASs are visible by the instruction set, they are not speculative and do
not address performance.

Ye and Kaeli [Ye and Kaeli 2005] have proposed a design which aims at
addressing both performance and security without modifying the instruction
set. Their reliable return address stack (RRAS) is designed to detect returns
even when they are hidden through unstructured programmation. The main
objective is to detect all cases of return address mispredictions. This goal is
priviledged over performance. RAS overflows are avoided by spilling the RAS
to memory on overflows and refilling it on underflows. Also, the RAS is saved
and restored on context switches to maintain the correct state. Misalignment
of the TOS, which may be due to hacks, compiler tricks, or direct assembly
programming, is handled by scanning the RAS in reverse order from top to
bottom to determine the correct TOS. Finally, the RRAS prevents the occurence
of wrong-path corruption of a return address by stalling the fetch of a call
instruction as long as any speculative return instruction is in-flight. On a deep
wide-issue superscalar pipeline, this last feature alone will significantly impair
performance. All these measures increase the accuracy of the RAS to nearly
100% and, therefore, address the security, but at the cost of an overall processor
performance decrease.

In contrast, the techniques we investigate in this article address return ad-
dress prediction accuracy to improve the overall processor performance: on the
detection of any misprediction on the RAS, fetch is not stopped, but an alternate
source of prediction is used.

4. RAS CORRUPTION DETECTION

RAS corruption is detected at the same time as making the prediction. By
adding a small amount of additional state (e.g., another TOS, corruption bits),
it is possible to quickly determine that the specific RAS entry used in the current
prediction has been corrupted. For brevity, we say that return predictions using
corrupted state are corrupted return predictions.

We present two simple hardware mechanisms that respectively detect RAS
overflows and corruption by wrong-path instructions. These mechanisms detect
these respective situations with 100% coverage.

Note that corruption by overflows or by wrong-path instructions does not
always result in a return misprediction. False detections are a natural conse-
quence of program behavior. Firstly, it is consistent with the operation of the

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 15, Publication date: Nov. 2008.



Speculative Return Address Stack Management Revisited • 15:7

Fig. 1. Detecting overflows on a finite RAS. A chain of procedure calls is executed, with procedure
A calling B, B calling C, etc, up to F calling a procedure G. @A indicates the address to return to
in procedure A, when returning to A. The gray parts are additions to the RAS for the purpose of
corruption detection. The FW box shows the first-wrap bit.

RAS that overflows can be correct predictions (e.g., when executing recursive
procedures, the same return address is repeatedly pushed on the RAS). Even
though overflow occurs, return address prediction remains correct. Secondly,
RAS activity on wrong-path instruction sequences can be very complex. RAS
contents may be overwritten with wrong-path return addresses that are the
same as the correct return addresses. This can happen when a procedure is re-
peatedly called from a loop and control flow inside the procedure is mistakenly
predicted to leave the procedure. The next iteration of the loop executes the
same call, thereby overwriting the RAS with the same return address.

4.1 Detecting RAS Overflows on a Conventional RAS

Call instructions push their return address on the RAS. The corresponding
return instructions pop the address off the stack. The TOS points to the current
top of the stack. Conceptually, the number of return addresses on the stack
grows as large as necessary (Figure 1, left).

In practice, the RAS is finite in size. When the TOS exceeds the physical
RAS size, it wraps around to the bottom of the RAS. Hereby, call instructions
start to overwrite older RAS entries, erasing the return addresses of prior calls.
When program control leaves procedure C, procedure C’s return instruction is
predicted to jump back to procedure F instead of B (Figure 1, left).

We detect RAS overflows by means of a second pointer to the RAS: the CD-
TOS (corruption detection TOS). The TOS and CD-TOS together identify the
region of the stack that holds the most recently pushed return addresses. Over-
flow occurs when a call instruction overwrites the entry pointed to by the CD-
TOS, then, the CD-TOS is incremented by 1. Underflow occurs when a return
address is predicted with the TOS and CD-TOS pointing to the same RAS entry;
then, the CD-TOS is decremented by 1.

A return instruction is predicted correctly as long as the TOS differs from the
CD-TOS. This is certainly true for the first return after a call instruction. After
executing a longer sequence of returns, the TOS wraps around and at some point
it meets the CD-TOS (Figure 1, right). From this moment on, predictions are
made using addresses that have been overwritten by more recent instructions
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Fig. 2. Detecting wrong-path activity on the RAS. A chain of procedure calls is executed with
procedure A calling B, procedure B calling C and procedure C calling D. The call to B is on the correct
path, while the others are wrong-path calls. The figure shows what happens when squashing the
wrong-path instructions. In this example, the RAS is 4 entries large so the vector length in the
CheckTOS table is N = 4. The gray parts are additions to the RAS for the purpose of corruption
detection.

(@E and @F ), erasing the old return addresses (@A and @B). These predictions
are made using corrupted state, so they may be incorrect predictions.

Note that the TOS and CD-TOS already meet at the last correctly predicted
return address (Figure 1, middle). This condition is detected by checking a first-
wrap bit. Call instructions that increase the CD-TOS also set the first-wrap bit.
A return address prediction uses corrupted state when the TOS and CD-TOS
are equal and the first-wrap bit is not set. When the CD-TOS is decremented,
the first-wrap bit is reset.

The CD-TOS and first-wrap bit are computed along the correct execution
path. They are checkpointed and recovered together with the TOS to protect
them from corruption by speculative execution.

4.2 Detecting Wrong-Path RAS Pushes

During speculative execution, wrong-path call and return instructions may be
fetched and act upon the RAS. When a branch misprediction is detected, the
RAS state is partially recovered by copying the TOS from checkpointed stor-
age [Jourdan et al. 1996]. Wrong-path call instructions, however, have the side-
effect of overwriting RAS entries, which may cause future RAS mispredictions.
This occurs, for example, when a wrong-path return and then a wrong-path call
instruction are executed. The wrong-path call instruction modifies the RAS en-
try for the return (Figure 2). After recovery, the TOS is correctly restored, but
the RAS contents remain incorrect.

We introduce a simple mechanism to determine which entry has been over-
written by a wrong path return. Every entry in the RAS is augmented with a
corruption bit. The underlying idea is that, when the corruption bit is set, it
indicates that the RAS entry has been overwritten by a wrong-path call.

When fetching instructions, we implicitly assume that the instruction fetch
is performed on the right path. Therefore, on a push by a call, the corruption
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bit is set to 0 indicating that the entry is valid. When a misprediction is later
detected, one would like to be able to invalidate immediately all the entries of
the RAS that have been corrupted on the wrong path.

To track which RAS entries have been modified, we associate an extra lo-
cal checkpoint mechanism associated with the RAS. For an N -entry RAS, this
checkpoint mechanism consists of a table of N -bit vectors. We will refer to this
table as the CheckTOS table. On a call, the index of the RAS entry written
by the push is checkpointed in decoded format on entry CTOS on the Check-
TOS table; that is, if entry X is written on the RAS, a vector of N bits is written
on the CheckTOS table with bit X set to 1 and the other bits set to 0. On the call,
CTOS is incremented. Thus, CheckTOS holds the RAS entries modified by all
inflight call instructions in the region delimited by the CTOS of the recovered
instruction, CTOSR and the current CTOS, CTOSC. Note that CTOS must be
checkpointed in the global checkpoint mechanism.

During a misprediction recovery, the checkpoint vectors associated with all
the calls on the wrong path (i.e., all entries between CTOSR and CTOSC) are
ORed. The resulting vector Vcorrupt represents the entries that have been over-
written by the calls on the wrong path (i.e., the 1’s in this vector correspond
exactly with the entries that have been overwritten by wrong path calls on the
RAS).

The vector of corruption bits of the RAS entries is then updated by an OR
with the vector Vcorrupt.

Our mechanism detects all RAS corruptions as long as the number of calls
encountered on the wrong path is lower than the number of entries in the
CheckTOS table.

In our simulations, we encountered no more than 10 calls on the wrong
path before detecting the misprediction, except for parser where the number of
wrong-path calls peaked at 15. The simulations presented in this article assume
16 entries in the CheckTOS table.

The CheckTOS table is very small: For an 8-entry RAS, the CheckTOS table
contains 16 entries of just 8 bits each (i.e., 16 bytes). This is clearly smaller than
the size of the RAS, which could be up to 128 bytes for a 64-bit architecture.

4.3 Detecting Corruption on Self-Checkpointing RAS

We refer to the self-checkpointing RAS of Jourdan et al. [1996] as the SC-
RAS. The SC-RAS has a particular allocation behavior that calls for specific
mechanism to detect corruption.

4.3.1 Operation of the SC-RAS. The SC-RAS explicitly links each RAS
entry to the logically lower RAS entry using a next-on-stack (NOS) pointer
[Jourdan et al. 1996]. The next entry to allocate is indicated by the NEXT
pointer. Thus, when executing a call instruction, the NOS pointer and return
address fields of the entry pointed to by NEXT are initialized and the TOS is
updated to point to this entry. Finally, the NEXT pointer is incremented by
one.

When executing a return instruction, the predicted return address is read
from the entry pointed to by TOS. The NOS field of this entry is copied to
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Fig. 3. Detecting SC-RAS corruption. A chain of procedure calls is executed, with procedure A
calling B, B calling C, etc, up to E calling a procedure F (a). Correct path returns follow immediately,
taking control back to procedure A (b). Then, two wrong-path calls are executed to G and H (c) and
recovery is performed (d). Extending the RAS pointers gives the impression of a larger RAS (virtual
copy shown in gray). The MAX pointer and empty bit (E box) are additions to the RAS for the purpose
of detecting corruption.

the TOS, thereby popping this entry from the stack. The NEXT pointer is not
modified by return instructions. This allocation behavior implies that all RAS
entries are cyclically reallocated by the progressing NEXT pointer.

We distinguish two types of SC-RAS corruption: (1) mispredictions due to
reallocation of SC-RAS entries and (2) mispredictions due to wrong-path SC-
RAS pushes. Note that, contrary to the simple RAS, wrong-path SC-RAS pushes
cause mispredictions mostly at the bottom of the stack, which is much less
harmful.

4.3.2 Detecting Reallocation of SC-RAS Entries. The region of SC-RAS en-
tries that may hold correct state is delimited by two pointers. On the one hand,
the TOS pointer delimits the top of the stack: Entries that are above the TOS
pointer have not yet been allocated and they are not part of the correct stack
state. On the other hand, the NEXT pointer serves as a re-allocation pointer
that invalidates entries at the bottom of the stack. Thus, the region of the SC-
RAS that may hold correct state can be deduced by comparing the TOS and
NEXT pointer.

Comparing pointers that may wrap around requires us to know which pointer
is above the other one. E.g. when NEXT=TOS+1 then an N -entry SC-RAS may
either contain N − 1 addresses or none, depending on how this situation was
reached. To track the relation between the TOS and NEXT pointers, we simply
make the TOS, NOS and NEXT pointers wider to extend their range (e.g., by 1
bit. This extra bit is dropped when accessing the SC-RAS. Using this modifica-
tion, the valid RAS entries are found in the range [NEXT-N ,NEXT] where N is
the SC-RAS size. This is depicted in (Figure 3(a)), where the extended ranges
of the RAS pointers are depicted by duplicating the RAS (only the black part
actually exists).
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The SC-RAS prediction is corrupted when the prediction is based on an SC-
RAS entry outside the valid range. To support the corruption detector, we add
an empty bit to the SC-RAS and operate it as follows. The empty bit is initially
1. The empty bit is set when executing a return with a NOS field outside the
valid range. The empty bit is cleared when executing a call instruction. Return
predictions use corrupted state when the empty bit was set to 1 before making
the prediction.

Furthermore, we make the following modification to the SC-RAS to improve
its efficiency. If the stack was not empty before the return and does not become
empty after the return, then NOS is copied to TOS (i.e., the entry is popped).
If the stack was empty before the return or becomes empty on the return, then
the empty bit is set, the RAS is not popped since there are no more valid entries
in the RAS (Figure 3(b)).

Note that when executing a call on an empty stack, then the caller to the
current function is unknown on the RAS. The corresponding pushed entry must
reflect this situation: its NOS field is written with an out-of-range number (e.g.,
MAX-N -1) (Figure 3(c)).

4.3.3 Detecting Wrong-Path SC-RAS Pushes. Wrong-path call instructions
allocate RAS entries that follow sequentially on the entry pointed to by NEXT.
The NEXT pointer is recovered from checkpoint storage when detecting a mis-
prediction, so the corruption of these entries can not be deduced from the stack
pointers. Thus, we add a MAX pointer that tracks the maximum value of the
NEXT pointer. The valid range becomes [MAX-N ,NEXT].

When executing wrong-path calls, NEXT is incremented and MAX tracks the
maximum value of NEXT (Figure 3(c)). NEXT and MAX differ after recover-
ing from the misspeculation. The entries corrupted by wrong-path instructions
have been subtracted from the valid range (Figure 3(d)). Subsequent call in-
structions will enlarge the valid range.

4.4 Dealing with Misaligned TOS and Context Switches

As pointed out by Annavaram et al. [2002], in some applications, explicit man-
agement of return targets or frequent context switching may lead to TOS mis-
alignment. These mispredictions cannot be classified as overflow or wrong path
corruption. However, once a TOS misalignment has been encountered, the sub-
sequent returns on the TOS will be also misaligned until a call is encountered.

Although detecting the first TOS misalignment appears to be hard, we can
use the respective overflow detectors that have been presented above to clas-
sify the subsequent returns as corrupted predictions. When a TOS misalign-
ment is encountered, we force our mechanisms to consider that the overall
RAS is empty (i.e., we force CD-TOS=TOS and FW=0 for the overflow detector
for conventional RAS and we set the empty bit for the overflow detector for
SC-RAS).

To avoid even the first return misprediction due to a TOS misalignment as-
sociated with a context switch, the confidence estimators may be reset similarly
on a context switch.
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This feature is not validated in our experiments since we had no access to ap-
plications featuring this type of TOS misalignments and our simulation frame-
work did not accurately model operating system effects.

5. USING A FREE BACKUP PREDICTOR FOR CORRUPTED RETURNS

The mechanisms presented in the previous section detect whether or not the
top entry of the RAS has been corrupted since its write by the associated call.
Although the content of this entry may still deliver a correct prediction, the
accuracy of the prediction delivered by this entry is likely to be quite poor on
average. Therefore, using an alternate source for predicting the returns when
the top entry is corrupted will deliver better performance even if the accuracy
of this alternate source is relatively low.

We chose here to use an already present component, the BTB, as this alter-
nate source. The BTB holds information on all branch instructions, including
the branch type (conditional, indirect, return, etc.) and a branch target address.
The BTB is known to be a relatively poor return address predictor [Skadron
et al. 1998]. Table II shows that the accuracy of the BTB on returns is only
around 63% of good predictions on our benchmark selection. However, in this
article, we use the BTB prediction only when the RAS prediction is known to
come from a corrupted RAS entry. Therefore, the BTB prediction accuracy does
not need to be very high to improve overall accuracy.

Some processor designs do not implement BTBs (e.g., Alpha EV6 [Kessler
1999] or the canceled Alpha EV8 [Seznec et al. 2002]). On such processors, the
indirect jump predictor could be used as the alternate source for predicting re-
turns when the RAS top entry is corrupted. Experiments presented in Section
6.5 illustrate that the indirect jump predictor is a slightly more accurate alter-
nate source for predicting the low confidence returns than the BTB and leads
to performance slightly higher than the BTB.

Note that, in both cases, the alternate source for return predictions is already
present in the instruction fetch front end and, therefore, their new functionality
as backup return predictor comes for free.

6. EVALUATION

We evaluate our BTB backup predictor on three RAS designs: the simple RAS
(i.e., a RAS without any speculative management enhancement); the check-
pointed top RAS from Skadron et al. [1998], which we will refer to as the CT-
RAS; and the self-checkpointing RAS from Jourdan et al. [1996]. As a first step,
we evaluate 32-entry RAS for the three designs, since this medium size is often
considered as a good tradeoff. Then, we vary the RAS sizes.

6.1 Evaluation of 32-Entry RAS Designs

6.1.1 Simple RAS. Table III illustrates the performance of a 32-entry sim-
ple RAS alone and with a BTB backup. On average, the baseline design achieves
2.05 IPC and 1.01 mispredicted return instructions per 1,000 instructions.
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Table III. Performance and Analysis of the Backup
Predictor on a 32-entry Simple RAS

Baseline Backup
Bench- Return Return
mark IPC MPKI PVN IPC MPKI

crafty 2.25 1.14 85.1% 2.30 0.52
eon 2.20 1.46 69.2% 2.30 0.33
gap 1.21 0.13 92.8% 1.21 0.00
gcc 1.96 1.03 70.5% 1.97 0.72
parser 1.49 1.36 59.2% 1.52 0.56
perlbmk 2.59 0.48 54.4% 2.62 0.14
vortex 2.41 0.06 95.8% 2.41 0.01
Q1 2.55 1.36 91.7% 2.67 0.10
Q4 2.22 1.41 71.2% 2.32 0.32
Q6 2.20 2.15 76.7% 2.37 0.37
Q16 2.76 0.32 46.8% 2.80 0.05
Q17 2.15 1.58 92.1% 2.26 0.21
average 2.05 1.01 72.3% 2.10 0.28

The overflow and wrong-path corruption detectors classify all the return
mispredictions as corrupted on our benchmark suite. We have already pointed
out in Section 4 that some return predictions may use corrupted state but are
nonetheless correctly predicted. We characterized this phenomenon (column
PVN in Table III): 47% to 96% are effectively mispredicted by the RAS.

When using the BTB as a backup predictor for corrupted predictions on the
RAS, performance (measured in IPC) improves by 2.5%, on average, on our
benchmark set and can improve up to 7.6% on Q6. The average return mis-
predictions drop from 1.01 MPKI to 0.28 MPKI, a factor of 3.6 difference. Note
that all mispredictions are now due to the backup predictor. RAS predictions
are used only when they are correct.

6.1.2 CT-RAS. On the CT-RAS, the top entry must be checkpointed on
every branch [Skadron et al. 1998]. In addition to the top entry of the RAS, our
scheme requires to checkpoint and restore the corruption bit of the top RAS
entry to make the wrong-path instructions detector work correctly.

For 32 entries, the average CT-RAS accuracy is 0.39 MPKI and the baseline
IPC is 2.09 (Table IV). This confirms that, as stated in [Skadron et al. 1998],
for a 32-entry RAS, most of the return mispredictions are due to overwrites of
the top entry of the RAS by a wrong path instruction.

Enabling the BTB backup predictor allows to further reduce the mispredic-
tion rate on returns to a mere 0.09 MPKI. This further translates into a small
average increase of performance (2.09 to 2.12 IPC).

6.1.3 The SC-RAS. The baseline 32-entry SC-RAS design leads to a
disappointing performance with an IPC only slightly higher than the Simple
RAS (2.07 against 2.05) and a return misprediction rate only slightly lower than
the Simple RAS. We will see in Section 6.2 that SC-RAS needs more entries to
be efficient.
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Table IV. Performance and Analysis of the Backup
Predictor on a 32-entry CT-RAS

Baseline Backup
Bench- Return Return
mark IPC MPKI PVN IPC MPKI

crafty 2.33 0.10 74.0% 2.34 0.04
eon 2.30 0.35 62.6% 2.33 0.07
gap 1.21 0.07 97.1% 1.21 0.00
gcc 2.00 0.32 75.4% 2.01 0.19
parser 1.51 0.67 68.9% 1.53 0.34
perlbmk 2.60 0.36 52.1% 2.63 0.11
vortex 2.41 0.02 99.5% 2.41 0.00
Q1 2.57 1.13 90.5% 2.67 0.10
Q4 2.29 0.46 61.4% 2.32 0.10
Q6 2.33 0.52 61.8% 2.37 0.00
Q16 2.79 0.05 74.9% 2.80 0.00
Q17 2.20 0.86 94.3% 2.27 0.08
average 2.09 0.39 71.4% 2.12 0.09

Enabling the backup predictor on corrupted return predictions yields an
increase of the average IPC from 2.07 to 2.12 and a decrease of the average
return rate from 0.74 misp/KI to 0.09 misp/KI.

6.1.4 Comparing the 32-Entry RAS Designs. The three 32-entry RAS de-
signs we have analyzed have quite distinct behaviors in their baseline form.
For instance, the Simple RAS performs very poorly on the SPEC benchmark in
general. On the other hand, the SC-RAS design performs very poorly on TPC-D
benchmarks, Q16, and Q17, but shines on SPEC benchmarks.

These differences are due to the types of mispredictions that these designs en-
counter. The self-checkpointing RAS behaves differently from the simple RAS
and CT-RAS with respect to overflows and wrong-path activity. The SC-RAS
only suffers from overflow mispredictions. This is reflected in the PVN of the
corruption detector which is very high, 81% to 100% with an average of 99.3%
(Table V). However, the number of RAS overflows is also very high compared
with the other designs—a valid RAS entry associated with a call is overwrit-
ten by overflow whenever 32 other calls are fetched before the corresponding
return.

On the other hand, there are very small differences in terms of performance
and misprediction return rates when the RAS is backed up with the BTB and
corruption detectors.

6.2 Varying RAS Size

Table VI illustrates the average performance when varying RAS sizes for the
three previously considered RAS designs and for the different combinations of
the corruption detectors, the BTB being used as backup predictor.

First, it can be noticed that the SC-RAS design is the most effective design
when no backup predictor is used. However a large number of entries is required
on this design (around 128).
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Table V. Performance and Analysis of the Backup
Predictor on a 32-Entry SC-RAS

Baseline Backup
Bench- Return Return
mark IPC MPKI PVN IPC MPKI

crafty 2.33 0.17 98.8% 2.34 0.06
eon 2.28 0.65 99.9% 2.33 0.05
gap 1.21 0.08 99.9% 1.21 0.01
gcc 2.01 0.16 99.8% 2.02 0.04
parser 1.53 0.22 80.8% 1.53 0.14
perlbmk 2.61 0.26 100.0% 2.63 0.03
vortex 2.37 0.46 100.0% 2.40 0.09
Q1 2.60 0.87 100.0% 2.68 0.12
Q4 2.17 1.72 100.0% 2.30 0.29
Q6 2.26 1.38 100.0% 2.37 0.01
Q16 2.56 1.90 100.0% 2.79 0.13
Q17 2.14 1.51 100.0% 2.26 0.13
average 2.07 0.74 99.3% 2.12 0.09

Table VI. Average IPC for Varying RAS Size, RAS
Configuration and Corruption Detector

Simple RAS
RAS Size 4 8 16 32 64 128
Baseline 1.90 2.02 2.05 2.05 2.05 2.05
Overflow 2.02 2.04 2.05 2.05 2.05 2.05
Wrong-path 1.94 2.07 2.10 2.10 2.10 2.10
Both 2.06 2.10 2.10 2.10 2.10 2.10

CT-RAS
RAS Size 4 8 16 32 64 128
Baseline 1.93 2.06 2.09 2.09 2.09 2.09
Overflow 2.06 2.08 2.09 2.09 2.09 2.09
Wrong-path 1.95 2.08 2.11 2.12 2.12 2.12
Both 2.07 2.11 2.11 2.12 2.12 2.12

SC-RAS
RAS Size 4 8 16 32 64 128
Baseline 1.83 1.94 2.03 2.07 2.10 2.11
Overflow 2.04 2.08 2.11 2.12 2.12 2.12

The overflow and wrong-path corruption detectors each target a particular
phenomenon that causes RAS mispredictions. However, the importance of these
phenomena depends on the RAS design and RAS size.

On simple RAS and CT-RAS predictors, the wrong-path detector improves
performance for all sizes. For these two designs, the overflow detector is also use-
ful for small RAS (8 entries or less), but has very limited impact for larger RAS.

The SC-RAS shows a very different behavior. The SC-RAS suffers only very
marginally from wrong-path activity—extra misses are encountered only when
an overflow occurs on the wrong path and would not have occurred on the right
path. But the allocation policy of the SC-RAS creates overflow corruption by
construction, therefore the overflow detector improves the SC-RAS performance
across all RAS sizes.
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6.3 Design Complexity Tradeoffs

6.3.1 RAS Design Complexity Tradeoff. Our proposal improves the per-
formance of the three considered designs for the return predictor. The extra
performance gain on a quite complex 128-entry SC-RAS can be considered as
marginal. However the performance gain on an 8-entry Simple RAS is much
more significant—an 8-entry Simple RAS backed up with the BTB reaches the
same performance level as a 64-entry SC-RAS.

The SC-RAS has a clearly more complex design (multiple stack pointers,
explicit linking of RAS entries) than the simple RAS. Furthermore, it should
be significantly larger than the simple RAS with corruption detectors before
reaching the same performance.

Therefore, our BTB-backedup RAS design can be used as a way to reduce
RAS design complexity.

6.3.2 Overall Branch Predictors Complexity Tradeoff. To improve the over-
all branch misprediction rate, one can use our BTB backup RAS or try to im-
prove the accuracy of the conditional branch predictor through enlargening it
for instance.

We run experiments comparing the respective benefits of quadrupling the
conditional predictor size from 64Kbits to 256Kbits and the use of a BTB-backup
RAS.

Our experiments showed that, quadrupling the OGEHL storage budget only
reduces the overall average misprediction rate by 0.20 misp/KI, 0.27 misp/KI
and 0.23 misp/KI (with very different behaviors depending on benchmarks) for
respectively 32-entry simple RAS, 32-entry CT-RAS and 32-entry SC-RAS. At
the same time, using the BTB-backup RAS results in respective reductions of
the overall average misprediction rates by 0.73 misp/KI, 0.30 misp/KI, 0.65
misp/KI for respectively 32-entry simple RAS, 32-entry CT-RAS and 32-entry
SC-RAS. This better overall misprediction rate also translates in a slightly
higher overall performance increase (0.03 IPC in average for simple RAS and
SC-RAS).

That is, enhancing any 32-entry RAS design with corruption detectors and
BTB-backup is more effective than quadrupling the OGEHL predictor size from
64Kbits to 256Kbits.

6.4 Pipeline Depth Impact

In Section 6.2, the 8-entry simple RAS backed up with the BTB and the 64-entry
SC-RAS were found to achieve very similar performance level for our baseline
16-cycle pipeline design. Table VII compares the performance achieved with dif-
ferent RAS designs and assuming different pipeline depths. Note that varying
the pipeline depth impacts many aspects of processor performance. To factor
out these effects, performance is presented as a fraction of the performance that
would be achieved with perfect return prediction. The table also illustrates the
return misprediction rates. Two designs are considered, 8-entry simple RAS
and 64-entry SC-RAS.

As expected, the performance loss and the return misprediction rate in-
crease with the pipeline depth. The performance loss for the 8-entry simple RAS
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Table VII. Varying Pipeline Depth; Fraction of the Perfect-RAS IPC and Return
Mispredictions per 1,000 Instructions. 8-Entry Simple RAS and 64-Entry SC-RAS

Simple RAS (8 entries)
Percentage Perfect-RAS IPC

Depth (cycles) 5 11 16 21 26 31
Baseline 98.5% 96.7% 94.9% 93.2% 91.7% 89.8%
BTB backup 99.6% 99.1% 98.8% 98.3% 97.7% 97.1%
JUMP backup 99.8% 99.5% 99.2% 98.9% 98.6% 98.3%

Return MPKI
Depth (cycles) 5 11 16 21 26 31
Baseline 0.99 1.31 1.51 1.63 1.72 1.84
BTB backup 0.25 0.36 0.39 0.41 0.46 0.50
JUMP backup 0.11 0.16 0.20 0.22 0.23 0.25

SC-RAS (64 entries)
Percentage Perfect-RAS IPC

Depth (cycles) 5 11 16 21 26 31
Baseline 99.5% 99.2% 98.8% 98.6% 98.3% 98.2%
BTB backup 99.9% 99.9% 99.8% 99.8% 99.7% 99.7%
JUMP backup 99.9% 99.9% 99.9% 99.9% 99.8% 99.8%

Return MPKI
Depth (cycles) 5 11 16 21 26 31

Baseline 0.30 0.30 0.30 0.30 0.30 0.30
BTB backup 0.05 0.05 0.05 0.05 0.05 0.05
JUMP backup 0.02 0.02 0.02 0.02 0.02 0.02

without backup becomes even very high; for a pipeline depth of 31 cycles, more
than 10% of the performance is wasted by the imperfect return prediction. A
deeper pipeline results in more calls and returns on the wrong path. This results
in more wrong path corruptions.

In contrast, the 8-entry simple RAS with BTB backup predictor remains quite
efficient with deep pipelines. However, the BTB predictor is used more often for
return prediction (from 1.09 used per 1,000 instructions for a 5-cycle pipeline
to 2.07 for a 31-cycle pipeline); therefore, the overall return misprediction rate
is also increased.

When the pipeline is relatively short (less than 20 cycles), the 8-entry simple
RAS predictor with BTB-backup achieves better or same performance than the
64-entry SC-RAS.

The simple RAS is affected both by RAS overflows and wrong path corrup-
tions. The more complex SC-RAS is only affected by RAS overflows. Using a
deeper pipeline only means a larger number of calls on the wrong path. But this
only translates to a very marginal increase of the number of RAS overflows on
the large 64-entry SC-RAS—less than 0.01 per 1,000 instructions extra uses of
the backup predictor for a 31-cycle pipeline.

6.5 BTB vs. Indirect Jump Predictor

Until now, we have considered using the BTB as the backup predictor for re-
turns. On processors featuring an indirect jump predictor, this jump predictor
can be used as the backup predictor for returns. Table VII also illustrates the
use of the indirect jump predictor as backup predictor.
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It can be noted that when backed up with a jump predictor, the 64-entry
SC-RAS achieves nearly perfect return mispredictions; the backup predictor is
used for 0.30 returns per 1,000 instructions and only 0.02 misp/KI on returns
is encountered, but for a BTB backup, the misprediction rate was already very
low (0.05 misp/KI).

The advantage of using the jump predictor as the backup predictor is more
pronounced when using a 8-entry simple RAS. When the pipeline depth is in-
creased, the accuracy advantage of the indirect jump predictor is translated in a
more pronounced accuracy benefit on return predictions and finally translates
in a more pronounced performance advantage.

For a very deep 31-cycle pipeline, a simple RAS backed with the indirect jump
predictor is still more efficient than a 64-entry SC-RAS. Therefore, we recom-
mend to use the indirect jump predictor as the back-up predictor, particularly
when the pipeline is very deep.

7. CONCLUSION

Highly accurate conditional and branch target predictors exacerbate the impor-
tance of correct return prediction. Ideally, a RAS should predict return targets
with a 100% accuracy. In practice, a simple medium size RAS has relatively poor
behavior. To improve the behavior of the RAS predictor, complex RAS designs
were proposed (e.g., self-checkpointing RAS) [Jourdan et al. 1996]. A large (e.g.,
128-entry) self-checkpointing RAS achieves nearly perfect return prediction.

In this article, we have shown that the two phenomena (RAS entry corruption
through RAS overflow and wrong-path overwrite) that are responsible for RAS
mispredictions can be detected through very simple hardware detectors. These
detectors always detect the RAS corruption. Therefore, when the RAS top is
known to be corrupted, one can rely on an alternate source of prediction. The
BTB or the indirect jump predictor can be used as such a free alternate predictor
for returns.

Our experiments show that our proposal can be used to improve the behavior
of the previously proposed speculative RASs; for example, Jourdan et al. [1996]
and Skadron et al. [1998].

In particular, it allows to achieve very high accuracy using a naive simple
RAS design as the base component; an 8-entry BTB-backed up simple RAS
achieves the same performance level as a state-of-the-art, but complex, 64-
entry self-checkpointing RAS [Jourdan et al. 1996]. Therefore, our (BTB or
jump predictor)-backed up RAS might be seen as a way to improve the perfor-
mance or as a way to reduce RAS design complexity. This complexity reduction
could be leveraged in SMT processors where a RAS predictor is needed for each
thread [Hily and Seznec 1996], and of course in multicores. For instance, an
8-core 4-way multithreaded processor (e.g., the Sun Niagara) should feature
32 RAS.

The RAS corruption detectors can also be used as branch confidence estima-
tors (e.g., to control fetch gating or in SMT fetch policies). Until now, in most
studies considering such a usage, the prediction of a return through the return
stack was uniformly considered as high confidence.
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When the top of the stack is uncorrupted, the accuracy of the prediction is
typically very high, nearly 100%, while the accuracy of the prediction provided
by the alternate predictor is lower. Therefore, our corruption detectors can be
used as a simple means to discriminate between low confidence and high confi-
dence return predictions. This can naturally be used to improve all the hardware
mechanisms that use branch confidence estimations (e.g., fetch gating) [Manne
et al. 1998; Buyuktosunoglu et al. 2003] or SMT fetch policies [Tullsen et al.
1996; Luo et al. 2001]. An overview of applications of confidence estimation is
provided in Jacobsen et al. [1996] and Grunwald et al. [1998].
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